全部版块 我的主页
论坛 数据科学与人工智能 数据分析与数据科学 数据分析与数据挖掘
977 0
2020-10-26
CDA人工智能学院致力于以优质的人工智能在线教育资源助力学员的DT职业梦想!课程内容涵盖数据分析机器学习深度学习人工智能tensorFlowPyTorch知识图谱等众多核心技术及行业案例,让每一个学员都可以在线灵活学习,快速掌握AI时代的前沿技术。PS:私信我即可获取CDA会员1个月免费试听机会

1. 极大似然

极大似然(Maximum Likelihood)估计为用于已知模型的参数估计的统计学方法。

比如,我们想了解抛硬币是正面(head)的概率分布θ;那么可以通过最大似然估计方法求得。假如我们抛硬币10次,其中8次正面、2次反面;极大似然估计参数θ值:

20180806065316_83789.png

其中,l(θ)为观测变量序列的似然函数(likelihood function of the observation sequence)。对l(θ)求偏导

20180806065308_94357.png

因为似然函数l(θ)不是凹函数(concave),求解极大值困难。一般地,使用与之具有相同单调性的log-likelihood,如图所示

20180806065301_63965.png

凹函数(concave)与凸函数(convex)的定义如图所示:

20180806065252_22884.png

从图中可以看出,凹函数“容易”求解极大值,凸函数“容易”求解极小值。

2. EM算法

EM算法(Expectation Maximization)是在含有隐变量(latent variable)的模型下计算最大似然的一种算法。所谓隐变量,是指我们没有办法观测到的变量。

比如,有两枚硬币A、B,每一次随机取一枚进行抛掷,我们只能观测到硬币的正面与反面,而不能观测到每一次取的硬币是否为A;则称每一次的选择抛掷硬币为隐变量。

用Y表示观测数据,Z表示隐变量;Y和Z连在一起称为完全数据( complete-data ),观测数据Y又称为不完全数据(incomplete-data)。观测数据的似然函数:

20180806065245_86582.png

求模型参数的极大似然估计:

20180806065237_20299.png

因为含有隐变量,此问题无法求解。因此,Dempster等人提出EM算法用于迭代求解近似解。EM算法比较简单,分为两个步骤:

E步(E-step),以当前参数θ(i)计算Z的期望值

20180806065229_94737.png

M步(M-step),求使Q(θ,θ(i))极大化的θ,确定第i+1次迭代的参数的估计值θ(i+1)

20180806065222_18753.png

如此迭代直至算法收敛。关于算法的推导及收敛性证明,可参看李航的《统计学习方法》及Andrew Ng的《CS229 Lecture notes》。这里有一些极大似然以及EM算法的生动例子。

3. 实例

[2]中给出极大似然与EM算法的实例。如图所示,有两枚硬币A、B,每一个实验随机取一枚抛掷10次,共5个实验,我们可以观测到每一次所取的硬币,估计参数A、B为正面的概率θ=(θA,θB),根据极大似然估计求解

20180806065214_72205.png

如果我们不能观测到每一次所取的硬币,只能用EM算法估计模型参数,算法流程如图所示:

20180806065207_28501.png

隐变量Z为每次实验中选择A或B的概率,则第一个实验选择A的概率为

20180806065201_45682.png

按照上面的计算方法可依次求出隐变量Z,然后计算极大化的θ(i)。经过10次迭代,最终收敛。

0D04CBB8996CB009643B8D6FD844F0C0.jpg

关注“CDA人工智能学院”,回复“录播”获取更多人工智能精选直播视频!


二维码

扫码加我 拉你入群

请注明:姓名-公司-职位

以便审核进群资格,未注明则拒绝

相关推荐
栏目导航
热门文章
推荐文章

说点什么

分享

扫码加好友,拉您进群
各岗位、行业、专业交流群