变分法(calculus of variations),是处理函数的函数的数学领域,和处理数的函数的普通微积分相对。譬如,这样的泛函可以通过未知函数的积分和它的导数来构造。变分法最终寻求的是极值函数:它们使得泛函取得极大或极小值。
变分法的关键定理是欧拉-拉格朗日方程。它对应于泛函的临界点。在寻找函数的极大和极小值时,在一个解附近的微小变化的分析给出一阶的一个近似。它不能分辨是找到了最大值或者最小值(或者都不是)。 
  变分法在理论物理中非常重要:在拉格朗日力学中,以及在最小作用原理在量子力学的应用中。变分法提供了有限元方法的数学基础,它是求解边界值问题的强有力工具。 
参考书:《广义变分原理》 钱伟长著
   <最佳过程的数学理论> 庞特里雅金