全部版块 我的主页
论坛 提问 悬赏 求职 新闻 读书 功能一区 悬赏大厅 文献求助专区
1542 3
2011-01-20
二维码

扫码加我 拉你入群

请注明:姓名-公司-职位

以便审核进群资格,未注明则拒绝

全部回复
2011-1-20 19:53:50
1# samstag

最好仔细说明一下
二维码

扫码加我 拉你入群

请注明:姓名-公司-职位

以便审核进群资格,未注明则拒绝

2011-1-20 19:54:51
1# samstag
A spatial Bayesian approach to weather derivatives                                                                                                        Document Information:Title:A spatial Bayesian approach to weather derivativesAuthor(s):Nicholas D. Paulson,  (University of Illinois, Urbana, Illinois, USA), Chad E. Hart,  (Iowa State University, Ames, Iowa, USA), Dermot J. Hayes,  (Iowa State University, Ames, Iowa, USA)Citation:Nicholas D. Paulson, Chad E. Hart, Dermot J. Hayes, (2010) "A spatial Bayesian approach to weather derivatives", Agricultural Finance Review, Vol. 70 Iss: 1, pp.79 - 96Keywords:Agriculture, Climatic loading, Insurance, Modelling, Rainfall, United States of AmericaArticle type:Research paperDOI:10.1108/00021461011042657 (Permanent URL)Publisher:Emerald Group Publishing LimitedAcknowledgements:The authors gratefully acknowledge comments and suggestions from the Editor, two anonymous reviewers, and Alicia L. Carriquiry.Abstract:Purpose – While the demand for weather-based agricultural insurance in developed regions is limited, there exists significant potential for the use of weather indexes in developing areas. The purpose of this paper is to address the issue of historical data availability in designing actuarially sound weather-based instruments.
Design/methodology/approach – A Bayesian rainfall model utilizing spatial kriging and Markov chain Monte Carlo techniques is proposed to estimate rainfall histories from observed historical data. An example drought insurance policy is presented where the fair rates are calculated using Monte Carlo methods and a historical analysis is carried out to assess potential policy performance.
Findings – The applicability of the estimation method is validated using a rich data set from Iowa. Results from the historical analysis indicate that the systemic nature of weather risk can vary greatly over time, even in the relatively homogenous region of Iowa.
Originality/value – The paper shows that while the kriging method may be more complex than competing models, it also provides a richer set of results. Furthermore, while the application is specific to forage production in Iowa, the rainfall model could be generalized to other regions by incorporating additional climatic factors.
二维码

扫码加我 拉你入群

请注明:姓名-公司-职位

以便审核进群资格,未注明则拒绝

2011-1-20 20:06:59
3# Henryzhu
文献就是
A spatial Bayesian approach to weather derivatives 不知道为什么不能下~~~
二维码

扫码加我 拉你入群

请注明:姓名-公司-职位

以便审核进群资格,未注明则拒绝

相关推荐
栏目导航
热门文章
推荐文章

说点什么

分享

扫码加好友,拉您进群
各岗位、行业、专业交流群