山东大学2018年651数学分析
证明:
$\displaystyle \because f_n(x)=\sum_{k=1}^{n}\frac{1}{n}\cos (x+\frac{k}{n}),$
$\displaystyle \therefore \lim_{n \to \infty }f_n(x)=\lim_{n \to \infty }\sum_{k=1}^{n}\frac{1}{n}\cos (x+\frac{k}{n})=\int_{0}^{1}\cos (x+t)dt=\sin (x+1)-\sin x=f(x).$
即$f_n(x)$一致收敛于$f(x)$。由此得到
$\displaystyle \forall \epsilon > 0,\forall x',x''\in (-\infty ,+\infty ),\exists N> 0,n> N,s.t.$
$\displaystyle |f_n(x')-f(x)|< \frac{\epsilon }{2},$
$\displaystyle |f_n(x'')-f(x)|< \frac{\epsilon }{2},$
并且,有
$\displaystyle \exists \delta > 0,|x'-x''|< \delta ,s.t.$
$\displaystyle |f_n(x')-f_n(x'')|\leq |f_n(x')-f(x)|+|f_n(x'')-f(x)|< \frac{\epsilon }{2}+\frac{\epsilon }{2}=\epsilon .$