国科数学竞赛模拟卷一
解:先解微分方程,由齐次方程,得
$r^2+3r+2=0,r_1=-1,r_2=-2.$
则原方程的齐次方程的解为
$\displaystyle Y=C_1e^{-x}+C_2e^{-2x},$
再用变异系数法,设原方程的一个特解为
$\displaystyle y^*=C_1(x)e^{-x}+C_2(x)e^{-2x},$
则
$\begin{cases}
y_1C'_1(x)+y_2C'_2(x) & = 0\\
y'_1C'_1(x)+y'_2C'_2(x) & =f(x)
\end{cases}$
从而
$\begin{cases}
e^{-x}C'_1(x)+e^{-2x}C'_2(x) & = 0\\
e^{-x}C'_1(x)+2e^{-2x}C'_2(x) & =-f(x)
\end{cases}$
解之得
$\displaystyle \Rightarrow C_1(x)=\int_{0}^{x}e^tf(t)dt,C_2(x)=-\int_{0}^{x}e^{2t}f(t)dt.$
$\displaystyle \therefore y=C_1e^{-x}+C_2e^{-2x}+e^{-x}\int_{0}^{x}e^tf(t)dt-e^{-2x}\int_{0}^{x}e^{2t}f(t)dt.$
(1)
$\displaystyle \because |f(x)|\leq M.x\in [0,+\infty ),M> 0.$
而
$\displaystyle |e^{-x}\int_{0}^{x}e^tf(t)dt|\leq e^{-x}\int_{0}^{x}e^t|f(t)|dt\leq Me^{-x}\int_{0}^{x}e^tdt\leq M,$
$\displaystyle |e^{-2x}\int_{0}^{x}e^{2t}f(t)dt|\leq e^{-2x}\int_{0}^{x}e^{2t}|f(t)|dt\leq \frac{1}{2}e^{-x}\int_{0}^{x}e^tdt\leq \frac{M}{2},$
$\displaystyle \therefore |y|\leq |C_1|+|C_2|+M+\frac{M}{2},(x\in[0, +\infty) )$
(2)
$\displaystyle \because \lim_{x\to+\infty }f(x)=0,$
$\displaystyle \therefore \exists X> 0,M> 0,x\leq X,s.t.|f(x)|\leq M,$
$\forall \epsilon > 0,x> X,s.t.|f(x)|< \epsilon .$
此时
$\displaystyle |e^{-x}\int_{0}^{x}e^tf(t)dt|\leq e^{-x}\int_{0}^{X}e^t|f(t)|dt+e^{-x}\int_{X}^{x}e^t|f(t)|dt< e^{-x}M(e^X-1)+\frac{1}{2}\epsilon < \epsilon .$
同样
$\displaystyle |e^{-2x}\int_{0}^{x}e^{2t}f(t)dt|< \epsilon .$
$\displaystyle \therefore |y|\leq |C_1e^{-x}|+|C_2e^{-2x}|+|e^{-x}\int_{0}^{x}e^tf(t)dt|+|e^{-2x}\int_{0}^{x}e^{2t}f(t)dt|< \epsilon (x\to+\infty )$