3. Solve Feynman-Kac Equation
Before you can convert symbolic expressions to MATLAB function handles, you must replace function calls, such as diff(v(t, X), X) and v(t, X), with variables. You can use any valid MATLAB variable names.
$$
\frac{{\sigma \left(t,X\right)}^2 \,\frac{\partial^2 }{\partial X^2 }\;y\left(X\right)}{2}+\mu \left(t,X\right)\,\frac{\partial }{\partial X}\;y\left(X\right)=-1
$$
$$
{\left(\frac{X\,{\sigma_0 }^2 }{2}+X\,\mu_0 \right)}\,\frac{\partial }{\partial X}\;y\left(X\right)+\frac{X^2 \,{\sigma_0 }^2 \,\frac{\partial^2 }{\partial X^2 }\;y\left(X\right)}{2}=-1
$$
$$
\begin{array}{l}
\frac{2\,\mu_0 \,\sigma_5 \,\mathrm{log}\left(b\right)-2\,\mu_0 \,\sigma_4 \,\mathrm{log}\left(a\right)+a^{\sigma_1 } \,{\sigma_0 }^2 \,\sigma_5 \,\sigma_4 -b^{\sigma_1 } \,{\sigma_0 }^2 \,\sigma_5 \,\sigma_4 }{\sigma_3 }-\frac{\mathrm{log}\left(X\right)}{\mu_0 }+\frac{\sigma_2 \,{\left(\sigma_7 -\sigma_6 -a^{\sigma_1 } \,{\sigma_0 }^2 \,\sigma_5 +b^{\sigma_1 } \,{\sigma_0 }^2 \,\sigma_4 \right)}}{\sigma_3 }+\frac{X^{\sigma_1 } \,{\sigma_0 }^2 \,\sigma_2 }{2\,{\mu_0 }^2 }\\
\mathrm{}\\
\textrm{where}\\
\mathrm{}\\
\;\;\sigma_1 =\frac{2\,\mu_0 }{{\sigma_0 }^2 }\\
\mathrm{}\\
\;\;\sigma_2 ={\mathrm{e}}^{-\frac{2\,\mu_0 \,\mathrm{log}\left(X\right)}{{\sigma_0 }^2 }} \\
\mathrm{}\\
\;\;\sigma_3 =2\,{\mu_0 }^2 \,{\left(\sigma_5 -\sigma_4 \right)}\\
\mathrm{}\\
\;\;\sigma_4 ={\mathrm{e}}^{-\frac{\sigma_6 }{{\sigma_0 }^2 }} \\
\mathrm{}\\
\;\;\sigma_5 ={\mathrm{e}}^{-\frac{\sigma_7 }{{\sigma_0 }^2 }} \\
\mathrm{}\\
\;\;\sigma_6 =2\,\mu_0 \,\mathrm{log}\left(b\right)\\
\mathrm{}\\
\;\;\sigma_7 =2\,\mu_0 \,\mathrm{log}\left(a\right)
\end{array}
$$