请教一下各位大佬,我本想要通过训练集与验证集的R方来判定模型是否过拟合,但是发现randomForestSRC包与传统的randomForest包预测输出方法不一致。我现在还原了随机森林,print的模型解释度也在31.11%,但R方却是0.77!我该如何得到最原始的训练集的预测值?> predicted1 <- predict(traindata200, traindata1, outcome = "test")
> print(predicted1)
Sample size of test (predict) data: 432
Number of grow trees: 200
Average no. of grow terminal nodes: 58.47
Total no. of grow variables: 5
Resampling used to grow trees: swor
Resample size used to grow trees: 273
Analysis: RF-R
Family: regr
% variance explained: 31.11
Test set error rate: 0.02
> sim <- as.numeric(predicted1$predicted)
> obs <- traindata1$容重
> gof(sim, obs)
[,1]
ME 0.00
MAE 0.06
MSE 0.01
RMSE 0.08
NRMSE % 53.10
PBIAS % 0.00
RSR 0.53
rSD 0.65
NSE 0.72
mNSE 0.47
rNSE 0.70
d 0.89
md 0.67
rd 0.88
cp 0.73
r 0.88
R2 0.77
bR2 0.76
KGE 0.63
VE 0.95