看了下你结果数据,是显示一个因变量和四个自变量,至于为什么没显示变量名,会不会因为你命名或复制时错了,把变量名都变为“|”
参数的意思,我也不是很确定,刚查了下,找到如下一些文字,好像能说明参数的意思,但我不确定是否对错哦!我将其复制在下面,出处我也附上。若找到文献原件,希望分享哦!谢谢啦!
Consider a parameterization in which a constant is present, e.g., Greene’s formulation (Greene 2003, 736):
Pr(Y = 0) = F(−Xb)
Pr(Y = 1) = F(u1 −Xb) − F(−Xb)
Pr(Y = 2) = F(u2 −Xb) − F(u1 −Xb)
...
In the preceding, F is the cumulative distribution function (CDF), either the cumulative standard normal distribution for ordered probit regression or the cumulative logistic distribution for ordered logistic regression. Since Greene includes a constant in his Xb, we need to indicate this to make his notation and Stata’s ordered probit/logistic notation comparable:
Pr(Y = 0) = F(−Xb − con)
Pr(Y = 1) = F(u1 − Xb − con) − F(−Xb − con)
Pr(Y = 1) = F(u2 − Xb − con) − F(u1 −Xb − con)
...
Now, compare this with Stata’s no-constant model:
Pr(Y = 0) = F(/cut1 − Xb)
Pr(Y = 1) = F(/cut2 − Xb) − F(/cut1 − Xb)
Pr(Y = 2) = F(/cut3 − Xb) − F(/cut2 − Xb)
...
Examining the expressions for Pr(Y = 0), we see that
−Xb − con = /cut1 − Xb
so Greene’s constant equals –/cut1. Greene set the first cut point to zero, whereas Stata set the constant to zero.
Combining this observation with the expressions for Pr(Y = 1), we see that Greene’s u1 = /cut2 + con = /cut2 − /cut1. Doing the same for Pr(Y = 2), we see that u2 = /cut3 − /cut1. Thus to estimate Greene’s model using the coefficient estimates from Stata’s ordered probit/logistic regression commands we can use the following:
Greene's intercept = −/cut1
Greene's u1 = /cut2 − /cut1
Greene's u2 = /cut3 − /cut1
...
After you fit your model using Stata, you can convert to Greene’s parameterization using lincom, which will provide both the coefficient estimate and the standard error as follows:
ologit/oprobit ...
lincom _b[/cut2] - _b[/cut1]
lincom _b[/cut3] - _b[/cut1]
...
Greene, W. H. 2003. Econometric Analysis. 5th ed. Upper Saddle River, NJ: Prentice Hall.