expressed_genes<- row.names(subset(fData(HSMM),num_cells_expressed >= 10))
length(expressed_genes)
HSMM <- HSMM[expressed_genes,]
valid_cells<- row.names(subset(pData(HSMM),num_genes_expressed >= 200 &Mapped.Fragments > 1000000))
length(valid_cells)
HSMM <- HSMM[,valid_cells]
expdt<- exprs(HSMM)
dim(expdt)
pData(HSMM)$Total_mRNAs<- Matrix::colSums(expdt)
head(pData(HSMM))
dim(HSMM)
valid_cells2<- pData(HSMM)$Total_mRNAs < 1e6
HSMM <- HSMM[,valid_cells2]
upper_bound<- 10^(mean(log10(pData(HSMM)$Total_mRNAs)) +
2*sd(log10(pData(HSMM)$Total_mRNAs)))
lower_bound<- 10^(mean(log10(pData(HSMM)$Total_mRNAs)) -
2*sd(log10(pData(HSMM)$Total_mRNAs)))
qplot(Total_mRNAs,data = pData(HSMM), color = Hours, geom ="density") +
geom_vline(xintercept= lower_bound) +
geom_vline(xintercept = upper_bound)
valid_cells3<- pData(HSMM)$Total_mRNAs > lower_bound & pData(HSMM)$Total_mRNAs< upper_bound
HSMM<- HSMM[,valid_cells3]
dim(HSMM)
L <- log(exprs(HSMM[expressed_genes,]))
M <- Matrix::t(scale(Matrix::t(L)))
cth <- newCellTypeHierarchy()
MYF5_id<- row.names(subset(fData(HSMM), gene_short_name == "MYF5"))
ANPEP_id <-row.names(subset(fData(HSMM),gene_short_name == "ANPEP"))
cth<- addCellType(cth, "Myoblast", classify_func = function(x) {x[MYF5_id,] >= 1 })
cth <- addCellType(cth,"Fibroblast", classify_func = function(x) { x[MYF5_id,] < 1 &x[ANPEP_id,] > 1 })
HSMM<- classifyCells(HSMM, cth, 0.1)
Errorin if (type_res[cell_name] == TRUE) next_nodes <- c(next_nodes, :
需要TRUE/FALSE值的地方不可以用缺少值