全部版块 我的主页
论坛 计量经济学与统计论坛 五区 计量经济学与统计软件 Stata专版
7320 5
2011-03-23
我在写论文时需要用logit回归,不大会用stata,很想知道代码怎么写。希望有哪位高人指导下~谢谢啦~
二维码

扫码加我 拉你入群

请注明:姓名-公司-职位

以便审核进群资格,未注明则拒绝

全部回复
2011-3-23 21:05:52
正在学习中
二维码

扫码加我 拉你入群

请注明:姓名-公司-职位

以便审核进群资格,未注明则拒绝

2011-3-23 21:10:43
1# 570306902


help logit                                       dialogs:  logit  svy: logit   
                                                also see:  logit postestimation
-------------------------------------------------------------------------------


Title


    [R] logit -- Logistic regression, reporting coefficients




Syntax


        logit depvar [indepvars] [if] [in] [weight] [, options]


    options                       description
    -------------------------------------------------------------------------
    Model
      noconstant                  suppress constant term
      offset(varname)             include varname in model with coefficient
                                    constrained to 1
      asis                        retain perfect predictor variables
      constraints(constraints)    apply specified linear constraints
      collinear                   keep collinear variables


    SE/Robust
      vce(vcetype)                vcetype may be oim, robust, cluster
                                    clustvar, bootstrap, or jackknife


    Reporting
      level(#)                    set confidence level; default is level(95)
      or                          report odds ratios
      nocnsreport                 do not display constraints
      display_options             control spacing and display of omitted
                                    variables and base and empty cells


    Maximization
      maximize_options            control the maximization process; seldom
                                    used


    + nocoef                      do not display coefficient table; seldom
                                    used
    + coeflegend                  display coefficients' legend instead of
                                    coefficient table
    -------------------------------------------------------------------------
    + nocoef and coeflegend do not appear in the dialog box.
    indepvars may contain factor variables; see fvvarlist.
    depvar and indepvars may contain time-series operators; see tsvarlist.
    bootstrap, by, fracpoly, jackknife, mfp, mi estimate, nestreg, rolling,
      statsby, stepwise, and svy are allowed; see prefix.
    vce(bootstrap) and vce(jackknife) are not allowed with the mi estimate
      prefix.
    Weights are not allowed with the bootstrap prefix.
    vce(), nocoef, and weights are not allowed with the svy prefix.
    fweights, iweights, and pweights are allowed; see weight.
    See [R] logit postestimation for features available after estimation.




Menu


    Statistics > Binary outcomes > Logistic regression




Description


    logit fits a maximum-likelihood logit model.  depvar=0 indicates a
    negative outcome; depvar!=0 & depvar!=. (typically depvar=1) indicate a
    positive outcome.


    Also see [R] logistic; logistic displays estimates as odds ratios.  Many
    users prefer the logistic command to logit.  Results are the same
    regardless of which you use -- both are the maximum-likelihood estimator.
    Several auxiliary commands that can be run after logit, probit, or
    logistic estimation are described in [R] logistic postestimation.  A list
    of related estimation commands is given in logistic estimation commands.


    If estimating on grouped data, see [R] glogit.


    See http://www.stata.com/support/faqs/stat/rasch.html if interested in
    the Rasch model.




Options


        +-------+
    ----+ Model +------------------------------------------------------------


    noconstant, offset(varname), constraints(constraints), collinear; see [R]
        estimation options.


    asis forces retention of perfect predictor variables and their associated
        perfectly predicted observations and may produce instabilities in
        maximization; see [R] probit.


        +-----------+
    ----+ SE/Robust +--------------------------------------------------------


    vce(vcetype) specifies the type of standard error reported, which
        includes types that are derived from asymptotic theory, that are
        robust to some kinds of misspecification, that allow for intragroup
        correlation, and that use bootstrap or jackknife methods; see [R]
        vce_option.


        +-----------+
    ----+ Reporting +--------------------------------------------------------


    level(#); see [R] estimation options.


    or reports the estimated coefficients transformed to odds ratios, i.e.,
        exp(b) rather than b.  Standard errors and confidence intervals are
        similarly transformed.  This option affects how results are
        displayed, not how they are estimated.  or may be specified at
        estimation or when replaying previously estimated results.


    nocnsreport; see [R] estimation options.


    display_options:  noomitted, vsquish, noemptycells, baselevels,
        allbaselevels; see [R] estimation options.


        +--------------+
    ----+ Maximization +-----------------------------------------------------


    maximize_options:  difficult, technique(algorithm_spec), iterate(#),
        [no]log, trace, gradient, showstep, hessian, showtolerance,
        tolerance(#), ltolerance(#), nrtolerance(#), nonrtolerance,
        from(init_specs); see [R] maximize.  These options are seldom used.


    The following options are available with logit but are not shown in the
    dialog box:


    nocoef specifies that the coefficient table not be displayed.  This
        option is sometimes used by program writers but is of no use
        interactively.


    coeflegend; see [R] estimation options.




Examples


    ---------------------------------------------------------------------------
    Setup
        . webuse lbw


    Logistic regression
        . logit low age lwt i.race smoke ptl ht ui
        . logit, level(99)


    ---------------------------------------------------------------------------
    Setup
        . webuse nhanes2d
        . svyset


    Logistic regression using survey data
        . svy: logit highbp height weight age female
    ---------------------------------------------------------------------------




Saved results


    logit saves the following in e():


    Scalars        
      e(N)                number of observations
      e(N_cds)            number of completely determined successes
      e(N_cdf)            number of completely determined failures
      e(k)                number of parameters
      e(k_eq)             number of equations in e(b)
      e(k_eq_model)       number of equations in model Wald test
      e(k_dv)             number of dependent variables
      e(k_autoCns)        number of base, empty, and omitted constraints
      e(df_m)             model degrees of freedom
      e(r2_p)             pseudo-R-squared
      e(ll)               log likelihood
      e(ll_0)             log likelihood, contant-only model
      e(N_clust)          number of clusters
      e(chi2)             chi-squared
      e(p)                significance
      e(rank)             rank of e(V)
      e(ic)               number of iterations
      e(rc)               return code
      e(converged)        1 if converged, 0 otherwise


    Macros         
      e(cmd)              logit
      e(cmdline)          command as typed
      e(depvar)           name of dependent variable
      e(wtype)            weight type
      e(wexp)             weight expression
      e(title)            title in estimation output
      e(clustvar)         name of cluster variable
      e(offset)           offset
      e(chi2type)         Wald or LR; type of model chi-squared test
      e(vce)              vcetype specified in vce()
      e(vcetype)          title used to label Std. Err.
      e(opt)              type of optimization
      e(which)            max or min; whether optimizer is to perform
                            maximization or minimization
      e(ml_method)        type of ml method
      e(user)             name of likelihood-evaluator program
      e(technique)        maximization technique
      e(singularHmethod)  m-marquardt or hybrid; method used when Hessian is
                            singular
      e(crittype)         optimization criterion
      e(properties)       b V
      e(estat_cmd)        program used to implement estat
      e(predict)          program used to implement predict
      e(marginsnotok)     predictions disallowed by margins
      e(asbalanced)       factor variables fvset as asbalanced
      e(asobserved)       factor variables fvset as asobserved


    Matrices      
      e(b)                coefficient vector
      e(Cns)              constraints matrix
      e(ilog)             iteration log (up to 20 iterations)
      e(gradient)         gradient vector
      e(mns)              vector of means of the independent variables
      e(rules)            information about perfect predictors
      e(V)                variance-covariance matrix of the estimators
      e(V_modelbased)     model-based variance


    Functions      
      e(sample)           marks estimation sample




Also see


    Manual:  [R] logit


      Help:  [R] logit postestimation;
             [R] brier, [R] exlogistic, [R] glogit, [R] logistic, [R] probit,
             >  [R] roc, [SVY] svy estimation, [XT] xtlogit
二维码

扫码加我 拉你入群

请注明:姓名-公司-职位

以便审核进群资格,未注明则拒绝

2011-3-23 21:42:29
看stata手册中logit的介绍的Methods and formulas  部分
二维码

扫码加我 拉你入群

请注明:姓名-公司-职位

以便审核进群资格,未注明则拒绝

2011-4-11 16:53:38
logit 被解释变量 解释变量
二维码

扫码加我 拉你入群

请注明:姓名-公司-职位

以便审核进群资格,未注明则拒绝

2011-9-15 10:21:10
那个几楼的,怎么把那东西都贴出来了啊
二维码

扫码加我 拉你入群

请注明:姓名-公司-职位

以便审核进群资格,未注明则拒绝

相关推荐
栏目导航
热门文章
推荐文章

说点什么

分享

扫码加好友,拉您进群
各岗位、行业、专业交流群