山东科技大学2018年硕士研究生712数学分析自命题试题
证明
1、
令
$\displaystyle \xi=x^2-y^2,\eta =2xy,$
$\displaystyle \frac{\partial z}{\partial x}=2x\frac{\partial z}{\partial \xi}+2y\frac{\partial z}{\partial \eta }.$
$\displaystyle \frac{\partial z}{\partial y}=-2y\frac{\partial z}{\partial \xi}+2x\frac{\partial z}{\partial \eta }.$
$\displaystyle \frac{\partial^2 z}{\partial x^2}=2\frac{\partial z}{\partial \xi}+2x(2x\frac{\partial^2 z}{\partial \xi^2}+2y\frac{\partial^2z}{\partial \xi\partial \eta})+2y(2x\frac{\partial^2 z}{\partial \eta \partial \xi}+2y\frac{\partial^2 z}{\partial \eta^2}).$
$\displaystyle \frac{\partial^2 z}{\partial y^2}=-2\frac{\partial z}{\partial \xi}-2y(-2y\frac{\partial^2 z}{\partial \xi^2}+2x\frac{\partial^2z}{\partial \xi\partial \eta})+2x(-2y\frac{\partial^2 z}{\partial \eta \partial \xi}+2x\frac{\partial^2 z}{\partial \eta^2}).$
于是有
$\displaystyle \frac{\partial^2 z}{\partial x^2}+\frac{\partial^2 z}{\partial y^2}=0.$
2、
由泊松积分
$\displaystyle \because \int_{0}^{+\infty}e^{-\alpha x^2}dx=\frac{\sqrt{\pi }}{2\sqrt{\alpha }}.$
$\displaystyle \therefore I(\alpha )=
\int_{0}^{+\infty}\sqrt{\alpha }e^{-\alpha x^2}dx=\frac{\sqrt{\pi }}{2}.$
由此可知,含参积分收敛。
由一致收敛判别法,当$\displaystyle \forall \alpha \geq 0,\exists A> 0$时,由于
$\displaystyle \lim_{\alpha \to0^+}\int_{A}^{+\infty}\sqrt{\alpha }e^{-\alpha x^2}dx\overset{t=\sqrt{\alpha} x}{=}\lim_{\alpha \to0^+}\int_{\sqrt{\alpha }A}^{+\infty}e^{-t^2}dt=\int_{0}^{+\infty }e^{-t^2}dt=\frac{\sqrt{\pi}}{2}.$
所认对于
$\displaystyle 0< \varepsilon _0< \frac{\sqrt{\pi}}{2},\exists \alpha _0> 0,s.t.$
$\displaystyle \int_{A}^{+\infty}\sqrt{\alpha_0}e^{-\alpha x^2}dx> \varepsilon _0.$
故积分不一致收敛。