北京大学实验班数学分析2020-2021秋季学期数学分析一期末模拟卷
证明
(1)、此题为典型的分段积分法。将积分区间分为
$\displaystyle [0,1]=[0,1-\delta ]\cup [1-\delta ,1],\delta > 0.$
将积分分为两部分
$\displaystyle \lim_{n \to \infty }\int_{0}^{1}G(x^n)dx=\lim_{n \to \infty }\int_{0}^{1-\delta }G(x^n)dx+\lim_{n \to \infty }\int_{1-\delta }^{1}G(x^n)dx,$
由已知,有
$\displaystyle n \to \infty ,x^n\to 0,x\in[0,1-\delta ],\frac{g(x)}{x}< \infty ,$
又
$\displaystyle \because G(x^n)=\int_{0}^{x^n}\frac{g(t)}{t}dt=\frac{g(\xi)}{\xi}\cdot x^n=0,(n \to \infty ,\xi\in(0,1-\delta ))$
$\displaystyle \therefore \lim_{n \to \infty }\int_{0}^{1-\delta }G(x^n)dx=0,$
同时
$\displaystyle x\in[1-\delta ,1],x^n\in[1-\delta ,1],G(x^n)< \infty .$
$\displaystyle \therefore \lim_{n \to \infty }\int_{1-\delta }^{1}G(x^n)dx=\lim_{n \to \infty }G(\xi^n)\int_{1-\delta }^{1}dx=0.$
综上结论,得
$\displaystyle \lim_{n \to \infty }\int_{0}^{1}G(x^n)dx=0.$
(2)、由已知 $\displaystyle \because G(x^n)=\int_{0}^{x^n}\frac{g(t)}{t}dt,$
$\displaystyle \therefore G'(x^n)=nx^{n-1}\frac{g(x^n)}{x^n},$
$\displaystyle \Rightarrow g(x^n)=\frac{x}{n}G'(x^n).$
再利用(1)的结论,得
$\displaystyle \lim_{n \to \infty }n\int_{0}^{1}g(x^n)dx=\lim_{n \to \infty }\int_{0}^{1}xG'(x^n)dx=\lim_{n \to \infty }xG(x^n)|_0^1-\lim_{n \to \infty }\int_{0}^{1}G(x^n)dx=G(1).$