全部版块 我的主页
论坛 经济学论坛 三区 宏观经济学
1158 1
2022-01-13
机器学习神器Scikit-Learn保姆级入门教程[color=rgba(0, 0, 0, 0.3)]以下文章来源于尤而小屋[color=rgba(0, 0, 0, 0.3)] [color=rgba(0, 0, 0, 0.3)],作者尤而小屋
[color=rgba(0, 0, 0, 0.3)]以下文章来源于尤而小屋[color=rgba(0, 0, 0, 0.3)] [color=rgba(0, 0, 0, 0.3)],作者尤而小屋[color=rgba(0, 0, 0, 0.3)]
Scikit-learn使用神图

下面这张图是官网提供的,从样本量的大小开始,分为回归、分类、聚类、数据降维共4个方面总结了scikit-learn的使用:

https://scikit-learn.org/stable/tutorial/machine_learning_map/index.html

安装

关于安装scikit-learn,建议通过使用anaconda来进行安装,不用担心各种配置和环境问题。当然也可以直接pip来安装:

pip install scikit-learn
数据集生成

sklearn内置了一些优秀的数据集,比如:Iris数据、房价数据、泰坦尼克数据等。

import pandas as pd
import numpy as np

import sklearn
from sklearn import datasets  # 导入数据集
分类数据-iris数据# iris数据
iris = datasets.load_iris()
type(iris)

sklearn.utils.Bunch

iris数据到底是什么样子?每个内置的数据都存在很多的信息

可以将上面的数据生成我们想看到的DataFrame,还可以添加因变量:

回归数据-波士顿房价

我们重点关注的属性:

  • data
  • target、target_names
  • feature_names
  • filename

同样可以生成DataFrame:

三种方式生成数据

方式1

#调用模块
from sklearn.datasets import load_iris
data = load_iris()

#导入数据和标签
data_X = data.data
data_y = data.target

方式2

from sklearn import datasets
loaded_data = datasets.load_iris()  # 导入数据集的属性

#导入样本数据
data_X = loaded_data.data
# 导入标签
data_y = loaded_data.target

方式3

# 直接返回
data_X, data_y = load_iris(return_X_y=True)
数据集使用汇总from sklearn import datasets  # 导入库

boston = datasets.load_boston()  # 导入波士顿房价数据
print(boston.keys())  # 查看键(属性)     ['data','target','feature_names','DESCR', 'filename']
print(boston.data.shape,boston.target.shape)  # 查看数据的形状
print(boston.feature_names)  # 查看有哪些特征
print(boston.DESCR)  # described 数据集描述信息
print(boston.filename)  # 文件路径
数据切分# 导入模块
from sklearn.model_selection import train_test_split
# 划分为训练集和测试集数据
X_train, X_test, y_train, y_test = train_test_split(
  data_X,
  data_y,
  test_size=0.2,
  random_state=111
)

# 150*0.8=120
len(X_train)
数据标准化和归一化from sklearn.preprocessing import StandardScaler  # 标准化
from sklearn.preprocessing import MinMaxScaler  # 归一化

# 标准化
ss = StandardScaler()
X_scaled = ss.fit_transform(X_train)  # 传入待标准化的数据

# 归一化
mm = MinMaxScaler()
X_scaled = mm.fit_transform(X_train)
类型编码

来自官网案例:https://scikit-learn.org/stable/modules/generated/sklearn.preprocessing.LabelEncoder.html

对数字编码对字符串编码建模案例导入模块from sklearn.neighbors import KNeighborsClassifier, NeighborhoodComponentsAnalysis  # 模型
from sklearn.datasets import load_iris  # 导入数据
from sklearn.model_selection import train_test_split  # 切分数据
from sklearn.model_selection import GridSearchCV  # 网格搜索
from sklearn.pipeline import Pipeline  # 流水线管道操作

from sklearn.metrics import accuracy_score  # 得分验证
模型实例化# 模型实例化
knn = KNeighborsClassifier(n_neighbors=5)
训练模型knn.fit(X_train, y_train)
KNeighborsClassifier()
测试集预测y_pred = knn.predict(X_test)
y_pred  # 基于模型的预测值
array([0, 0, 2, 2, 1, 0, 0, 2, 2, 1, 2, 0, 1, 2, 2, 0, 2, 1, 0, 2, 1, 2,
       1, 1, 2, 0, 0, 2, 0, 2])
得分验证

模型得分验证的两种方式:

knn.score(X_test,y_test)
0.9333333333333333
accuracy_score(y_pred,y_test)
0.9333333333333333
网格搜索如何搜索参数from sklearn.model_selection import GridSearchCV

# 搜索的参数
knn_paras = {"n_neighbors":[1,3,5,7]}
# 默认的模型
knn_grid = KNeighborsClassifier()

# 网格搜索的实例化对象
grid_search = GridSearchCV(
knn_grid,
knn_paras,
cv=10  # 10折交叉验证
)
grid_search.fit(X_train, y_train)
GridSearchCV(cv=10, estimator=KNeighborsClassifier(),
             param_grid={'n_neighbors': [1, 3, 5, 7]})
# 通过搜索找到的最好参数值
grid_search.best_estimator_
KNeighborsClassifier(n_neighbors=7)
grid_search.best_params_

Out[42]:

{'n_neighbors': 7}
grid_search.best_score_
0.975
基于搜索结果建模knn1 = KNeighborsClassifier(n_neighbors=7)

knn1.fit(X_train, y_train)
KNeighborsClassifier(n_neighbors=7)

通过下面的结果可以看到:网格搜索之后的建模效果是优于未使用网格搜索的模型:

y_pred_1 = knn1.predict(X_test)

knn1.score(X_test,y_test)
1.0
accuracy_score(y_pred_1,y_test)
1.0
二维码

扫码加我 拉你入群

请注明:姓名-公司-职位

以便审核进群资格,未注明则拒绝

全部回复
2022-1-16 11:24:26
二维码

扫码加我 拉你入群

请注明:姓名-公司-职位

以便审核进群资格,未注明则拒绝

相关推荐
栏目导航
热门文章
推荐文章

说点什么

分享

扫码加好友,拉您进群
各岗位、行业、专业交流群