摘要翻译:
对Shestakov和Umirbaev的一篇文章的主要结果给出了一个更简单的证明和推广。后一篇文章是解决关于永田自同构的非驯服性或“野性”的长期猜想的两篇文章中的第一篇。作为推论,我们得到了在任意维中形成自同构的多项式的导项的有趣信息,并证明了自同构在二维中的驯服性。
---
英文标题:
《A parachute for the degree of a polynomial in algebraically independent
ones》
---
作者:
St\'ephane V\'en\'ereau
---
最新提交年份:
2007
---
分类信息:
一级分类:Mathematics 数学
二级分类:Commutative Algebra 交换代数
分类描述:Commutative rings, modules, ideals, homological algebra, computational aspects, invariant theory, connections to algebraic geometry and combinatorics
交换环,模,理想,同调代数,计算方面,不变理论,与代数几何和组合学的联系
--
一级分类:Mathematics 数学
二级分类:Algebraic Geometry 代数几何
分类描述:Algebraic varieties, stacks, sheaves, schemes, moduli spaces, complex geometry, quantum cohomology
代数簇,叠,束,格式,模空间,复几何,量子上同调
--
---
英文摘要:
We give a simpler proof as well as a generalization of the main result of an article of Shestakov and Umirbaev. This latter article being the first of two that solve a long-standing conjecture about the non-tameness, or "wildness", of Nagata's automorphism. As corollaries we get interesting informations about the leading terms of polynomials forming an automorphism in any dimension and reprove the tameness of automorphisms in dimension two.
---
PDF链接:
https://arxiv.org/pdf/0704.1561