摘要翻译:
设$X$是紧致复流形,考虑一个小变形$\phi:\mathcal{X}\到$X$的b$,切丛$h^q(X_t,\mathcal{T}_{X_t})的上同调群的维数可能在此变形下发生变化。本文以$T$为参量,通过研究$H^q(X,\mathcal{T}_X)$中一类变形的障碍来研究这类现象,并得到障碍的计算公式。
---
英文标题:
《The Jumping Phenomenon of the Dimensions of Cohomology Groups of Tangent
Sheaf》
---
作者:
Xuanming Ye
---
最新提交年份:
2007
---
分类信息:
一级分类:Mathematics 数学
二级分类:Algebraic Geometry 代数几何
分类描述:Algebraic varieties, stacks, sheaves, schemes, moduli spaces, complex geometry, quantum cohomology
代数簇,叠,束,格式,模空间,复几何,量子上同调
--
一级分类:Mathematics 数学
二级分类:Differential Geometry 微分几何
分类描述:Complex, contact, Riemannian, pseudo-Riemannian and Finsler geometry, relativity, gauge theory, global analysis
复形,接触,黎曼,伪黎曼和Finsler几何,相对论,规范理论,整体分析
--
---
英文摘要:
Let $X$ be a compact complex manifold, consider a small deformation $\phi: \mathcal{X} \to B$ of $X$, the dimensions of the cohomology groups of tangent sheaf $H^q(X_t,\mathcal{T}_{X_t})$ may vary under this deformation. This paper will study such phenomenons by studying the obstructions to deform a class in $H^q(X,\mathcal{T}_X)$ with the parameter $t$ and get the formula for the obstructions.
---
PDF链接:
https://arxiv.org/pdf/0704.2113