摘要翻译:
Denef和Loeser定义了一个从可定义于伪有限域中的集合的Grothendieck环到Chow动机的Grothendieck环的映射,从而使得对这些集合应用任何上同调不变量成为可能。我们将其推广到具有顺循环Galois群的完全伪代数闭域。此外,我们定义了一些可定义集的不同Grothendieck环之间的映射,这些映射提供了附加信息,而不包含在关联动机中。特别地,我们推断Denef-Loeser映射不是内射的。
---
英文标题:
《Motives for perfect PAC fields with pro-cyclic Galois group》
---
作者:
Immanuel Halupczok
---
最新提交年份:
2008
---
分类信息:
一级分类:Mathematics 数学
二级分类:Logic 逻辑
分类描述:Logic, set theory, point-set topology, formal mathematics
逻辑,集合论,点集拓扑,形式数学
--
一级分类:Mathematics 数学
二级分类:Algebraic Geometry 代数几何
分类描述:Algebraic varieties, stacks, sheaves, schemes, moduli spaces, complex geometry, quantum cohomology
代数簇,叠,束,格式,模空间,复几何,量子上同调
--
---
英文摘要:
Denef and Loeser defined a map from the Grothendieck ring of sets definable in pseudo-finite fields to the Grothendieck ring of Chow motives, thus enabling to apply any cohomological invariant to these sets. We generalize this to perfect, pseudo algebraically closed fields with pro-cyclic Galois group. In addition, we define some maps between different Grothendieck rings of definable sets which provide additional information, not contained in the associated motive. In particular we infer that the map of Denef-Loeser is not injective.
---
PDF链接:
https://arxiv.org/pdf/0704.2206