摘要翻译:
在这篇文章中,我们研究了缺省逻辑变体之间的翻译,使得理论的扩展是翻译的输入和输出在一个双射对应中。我们假定翻译可以引入新的变量,翻译理论的结果可以在理论大小的时间内产生多项式,也可以在该大小的时间内产生多项式;然而,我们仅限于原始理论有扩展的情况。本研究填补了前人研究缺省逻辑限制下的双词翻译和缺省逻辑变体下的非双词翻译的空白。
---
英文标题:
《Bijective Faithful Translations among Default Logics》
---
作者:
Paolo Liberatore
---
最新提交年份:
2007
---
分类信息:
一级分类:Computer Science 计算机科学
二级分类:Artificial Intelligence
人工智能
分类描述:Covers all areas of AI except Vision, Robotics, Machine Learning, Multiagent Systems, and Computation and Language (Natural Language Processing), which have separate subject areas. In particular, includes Expert Systems, Theorem Proving (although this may overlap with Logic in Computer Science), Knowledge Representation, Planning, and Uncertainty in AI. Roughly includes material in ACM Subject Classes I.2.0, I.2.1, I.2.3, I.2.4, I.2.8, and I.2.11.
涵盖了人工智能的所有领域,除了视觉、机器人、机器学习、多智能体系统以及计算和语言(自然语言处理),这些领域有独立的学科领域。特别地,包括专家系统,定理证明(尽管这可能与计算机科学中的逻辑重叠),知识表示,规划,和人工智能中的不确定性。大致包括ACM学科类I.2.0、I.2.1、I.2.3、I.2.4、I.2.8和I.2.11中的材料。
--
一级分类:Computer Science 计算机科学
二级分类:Logic in Computer Science 计算机科学中的逻辑
分类描述:Covers all aspects of logic in computer science, including finite model theory, logics of programs, modal logic, and program verification. Programming language semantics should have Programming Languages as the primary subject area. Roughly includes material in ACM Subject Classes D.2.4, F.3.1, F.4.0, F.4.1, and F.4.2; some material in F.4.3 (formal languages) may also be appropriate here, although Computational Complexity is typically the more appropriate subject area.
涵盖计算机科学中逻辑的所有方面,包括有限模型理论,程序逻辑,模态逻辑和程序验证。程序设计语言语义学应该把程序设计语言作为主要的学科领域。大致包括ACM学科类D.2.4、F.3.1、F.4.0、F.4.1和F.4.2中的材料;F.4.3(形式语言)中的一些材料在这里也可能是合适的,尽管计算复杂性通常是更合适的主题领域。
--
---
英文摘要:
In this article, we study translations between variants of defaults logics such that the extensions of the theories that are the input and the output of the translation are in a bijective correspondence. We assume that a translation can introduce new variables and that the result of translating a theory can either be produced in time polynomial in the size of the theory or its output is polynomial in that size; we however restrict to the case in which the original theory has extensions. This study fills a gap between two previous pieces of work, one studying bijective translations among restrictions of default logics, and the other one studying non-bijective translations between default logics variants.
---
PDF链接:
https://arxiv.org/pdf/0707.3781