摘要翻译:
本文将Dezert-Smarandache理论(DSmT)中新近发展起来的新的(定量)信念条件规则族(BCR)扩展到定性的信念修正规则。由于在新事件(条件约束)发生的情况下,定量和定性信念分配的修正可以通过多种方式进行,所以我们只提出了我们认为最有吸引力的定性信念条件规则(QBCR),它允许直接用文字和语言标记来修正信念,从而避免了为解决问题而引入定量信念的特殊翻译。
---
英文标题:
《Qualitative Belief Conditioning Rules (QBCR)》
---
作者:
Florentin Smarandache, Jean Dezert
---
最新提交年份:
2007
---
分类信息:
一级分类:Computer Science 计算机科学
二级分类:Artificial Intelligence
人工智能
分类描述:Covers all areas of AI except Vision, Robotics, Machine Learning, Multiagent Systems, and Computation and Language (Natural Language Processing), which have separate subject areas. In particular, includes Expert Systems, Theorem Proving (although this may overlap with Logic in Computer Science), Knowledge Representation, Planning, and Uncertainty in AI. Roughly includes material in ACM Subject Classes I.2.0, I.2.1, I.2.3, I.2.4, I.2.8, and I.2.11.
涵盖了人工智能的所有领域,除了视觉、机器人、机器学习、多智能体系统以及计算和语言(自然语言处理),这些领域有独立的学科领域。特别地,包括专家系统,定理证明(尽管这可能与计算机科学中的逻辑重叠),知识表示,规划,和人工智能中的不确定性。大致包括ACM学科类I.2.0、I.2.1、I.2.3、I.2.4、I.2.8和I.2.11中的材料。
--
---
英文摘要:
In this paper we extend the new family of (quantitative) Belief Conditioning Rules (BCR) recently developed in the Dezert-Smarandache Theory (DSmT) to their qualitative counterpart for belief revision. Since the revision of quantitative as well as qualitative belief assignment given the occurrence of a new event (the conditioning constraint) can be done in many possible ways, we present here only what we consider as the most appealing Qualitative Belief Conditioning Rules (QBCR) which allow to revise the belief directly with words and linguistic labels and thus avoids the introduction of ad-hoc translations of quantitative beliefs into quantitative ones for solving the problem.
---
PDF链接:
https://arxiv.org/pdf/0709.0522