摘要翻译:
数据收集经常导致缺少值或变量的记录。本研究比较了3种不同的数据归算模型,并用精确度衡量它们的优点。采用自编码器
神经网络、主成分和支持向量回归进行预测,并结合遗传算法对缺失变量进行归算。PCA的使用提高了自动编码器网络的整体性能,而支持向量回归的使用显示了未来研究的潜力。对部分变量的归算精度可达97.4%。
---
英文标题:
《Autoencoder, Principal Component Analysis and Support Vector Regression
for Data Imputation》
---
作者:
Vukosi N. Marivate, Fulufhelo V. Nelwamodo, Tshilidzi Marwala
---
最新提交年份:
2007
---
分类信息:
一级分类:Computer Science 计算机科学
二级分类:Artificial Intelligence
人工智能
分类描述:Covers all areas of AI except Vision, Robotics, Machine Learning, Multiagent Systems, and Computation and Language (Natural Language Processing), which have separate subject areas. In particular, includes Expert Systems, Theorem Proving (although this may overlap with Logic in Computer Science), Knowledge Representation, Planning, and Uncertainty in AI. Roughly includes material in ACM Subject Classes I.2.0, I.2.1, I.2.3, I.2.4, I.2.8, and I.2.11.
涵盖了人工智能的所有领域,除了视觉、机器人、机器学习、多智能体系统以及计算和语言(自然语言处理),这些领域有独立的学科领域。特别地,包括专家系统,定理证明(尽管这可能与计算机科学中的逻辑重叠),知识表示,规划,和人工智能中的不确定性。大致包括ACM学科类I.2.0、I.2.1、I.2.3、I.2.4、I.2.8和I.2.11中的材料。
--
一级分类:Computer Science 计算机科学
二级分类:Databases 数据库
分类描述:Covers database management, datamining, and data processing. Roughly includes material in ACM Subject Classes E.2, E.5, H.0, H.2, and J.1.
涵盖数据库管理、
数据挖掘和数据处理。大致包括ACM学科类E.2、E.5、H.0、H.2和J.1中的材料。
--
---
英文摘要:
Data collection often results in records that have missing values or variables. This investigation compares 3 different data imputation models and identifies their merits by using accuracy measures. Autoencoder Neural Networks, Principal components and Support Vector regression are used for prediction and combined with a genetic algorithm to then impute missing variables. The use of PCA improves the overall performance of the autoencoder network while the use of support vector regression shows promising potential for future investigation. Accuracies of up to 97.4 % on imputation of some of the variables were achieved.
---
PDF链接:
https://arxiv.org/pdf/0709.2506