全部版块 我的主页
论坛 经济学人 二区 外文文献专区
368 0
2022-03-03
摘要翻译:
本项目介绍了电力需求和能耗管理系统及其在秘鲁南部冶炼厂的应用。它由一个小时需求预测模块和一个工厂电气系统仿真组件组成。第一个模块采用带反向传播训练算法的动态神经网络实现;用于预测每小时所需电力,误差率在1%以下。这些信息允许在能源高峰需求发生之前有效地管理它,将电力负荷的增加分配到其他时间,或者改进那些增加需求的设备。仿真模块采用参数估计、神经网络建模、统计回归和已有模型等先进的估计技术,模拟冶炼厂的电气行为。这些模块有助于电力需求和消费的适当规划,因为它们允许了解每小时需求的行为和工厂的消费模式,包括账单组件,以及能源不足和改进的机会,基于对设备、工艺和生产计划以及维护方案的信息的分析。最后介绍了该系统在秘鲁南部冶炼厂的应用效果。
---
英文标题:
《Electricity Demand and Energy Consumption Management System》
---
作者:
Juan Ojeda Sarmiento
---
最新提交年份:
2011
---
分类信息:

一级分类:Computer Science        计算机科学
二级分类:Artificial Intelligence        人工智能
分类描述:Covers all areas of AI except Vision, Robotics, Machine Learning, Multiagent Systems, and Computation and Language (Natural Language Processing), which have separate subject areas. In particular, includes Expert Systems, Theorem Proving (although this may overlap with Logic in Computer Science), Knowledge Representation, Planning, and Uncertainty in AI. Roughly includes material in ACM Subject Classes I.2.0, I.2.1, I.2.3, I.2.4, I.2.8, and I.2.11.
涵盖了人工智能的所有领域,除了视觉、机器人、机器学习、多智能体系统以及计算和语言(自然语言处理),这些领域有独立的学科领域。特别地,包括专家系统,定理证明(尽管这可能与计算机科学中的逻辑重叠),知识表示,规划,和人工智能中的不确定性。大致包括ACM学科类I.2.0、I.2.1、I.2.3、I.2.4、I.2.8和I.2.11中的材料。
--
一级分类:Computer Science        计算机科学
二级分类:Computational Engineering, Finance, and Science        计算工程、金融和科学
分类描述:Covers applications of computer science to the mathematical modeling of complex systems in the fields of science, engineering, and finance. Papers here are interdisciplinary and applications-oriented, focusing on techniques and tools that enable challenging computational simulations to be performed, for which the use of supercomputers or distributed computing platforms is often required. Includes material in ACM Subject Classes J.2, J.3, and J.4 (economics).
涵盖了计算机科学在科学、工程和金融领域复杂系统的数学建模中的应用。这里的论文是跨学科和面向应用的,集中在技术和工具,使挑战性的计算模拟能够执行,其中往往需要使用超级计算机或分布式计算平台。包括ACM学科课程J.2、J.3和J.4(经济学)中的材料。
--

---
英文摘要:
  This project describes the electricity demand and energy consumption management system and its application to Southern Peru smelter. It is composed of an hourly demand-forecasting module and of a simulation component for a plant electrical system. The first module was done using dynamic neural networks with backpropagation training algorithm; it is used to predict the electric power demanded every hour, with an error percentage below of 1%. This information allows efficient management of energy peak demands before this happen, distributing the raise of electric load to other hours or improving those equipments that increase the demand. The simulation module is based in advanced estimation techniques, such as: parametric estimation, neural network modeling, statistic regression and previously developed models, which simulates the electric behavior of the smelter plant. These modules facilitate electricity demand and consumption proper planning, because they allow knowing the behavior of the hourly demand and the consumption patterns of the plant, including the bill components, but also energy deficiencies and opportunities for improvement, based on analysis of information about equipments, processes and production plans, as well as maintenance programs. Finally the results of its application in Southern Peru smelter are presented.
---
PDF链接:
https://arxiv.org/pdf/0809.2421
二维码

扫码加我 拉你入群

请注明:姓名-公司-职位

以便审核进群资格,未注明则拒绝

相关推荐
栏目导航
热门文章
推荐文章

说点什么

分享

扫码加好友,拉您进群
各岗位、行业、专业交流群