摘要翻译:
设$C$是亏格$G\GE2$的代数曲线。$C$上的相干系统由一对$(E,V)$组成,其中$E$是$C$上秩$N$度$D$的代数向量丛,$V$是$E$的截面空间的维数$K$的子空间。相干系统的稳定性取决于一个参数$\α$。我们研究了相干系统的模空间的几何性质。我们证明了这些空间在非空时是不可约的,并得到了非空的充要条件。
---
英文标题:
《Moduli spaces of coherent systems of small slope on algebraic curves》
---
作者:
S. B. Bradlow, O. Garcia-Prada, V. Mercat, V. Munoz and P. E. Newstead
---
最新提交年份:
2007
---
分类信息:
一级分类:Mathematics 数学
二级分类:Algebraic Geometry 代数几何
分类描述:Algebraic varieties, stacks, sheaves, schemes, moduli spaces, complex geometry, quantum cohomology
代数簇,叠,束,格式,模空间,复几何,量子上同调
--
---
英文摘要:
Let $C$ be an algebraic curve of genus $g\ge2$. A coherent system on $C$ consists of a pair $(E,V)$, where $E$ is an algebraic vector bundle over $C$ of rank $n$ and degree $d$ and $V$ is a subspace of dimension $k$ of the space of sections of $E$. The stability of the coherent system depends on a parameter $\alpha$. We study the geometry of the moduli space of coherent systems for $0<d\le2n$. We show that these spaces are irreducible whenever they are non-empty and obtain necessary and sufficient conditions for non-emptiness.
---
PDF链接:
https://arxiv.org/pdf/0707.0983