全部版块 我的主页
论坛 经济学人 二区 外文文献专区
313 0
2022-03-03
摘要翻译:
在$P$-adic曲线上,定义了一类主$G$-束沿etale路径平行传输的泛函同构。这里$G$是一个有限表示的连通约化代数群,所考虑的主丛正是具有潜在强零次半可约化的主丛。所构造的同构从给定曲线的基本群向拓扑空间范畴中产生了具有简单传递的连续右作用$G(\mathbb{C}_{p})的连续函子。这推广了Deninger和Werner在$p$-adic曲线上向量丛情形下的一个构造。它可以看作是紧Riemann曲面上主丛的Ramanathan经典理论的部分p$adic模拟,它推广了紧Riemann曲面上向量丛的经典Narasimhan-Seshadri理论。
---
英文标题:
《Principal bundles on $p$-adic curves and parallel transport》
---
作者:
Urs Hackstein
---
最新提交年份:
2007
---
分类信息:

一级分类:Mathematics        数学
二级分类:Algebraic Geometry        代数几何
分类描述:Algebraic varieties, stacks, sheaves, schemes, moduli spaces, complex geometry, quantum cohomology
代数簇,叠,束,格式,模空间,复几何,量子上同调
--

---
英文摘要:
  We define functorial isomorphisms of parallel transport along \'etale paths for a class of principal $G$-bundles on a $p$-adic curve. Here $G$ is a connected reductive algebraic group of finite presentation and the considered principal bundles are just those with potentially strongly semistable reduction of degree zero. The constructed isomorphisms yield continous functors from the \'etale fundamental groupoid of the given curve to the category of topological spaces with a simply transitive continous right $G(\mathbb{C}_{p})$-action. This generalizes a construction in the case of vector bundles on a $p$-adic curve by Deninger and Werner. It may be viewed as a partial $p$-adic analogue of the classical theory by Ramanathan of principal bundles on compact Riemann surfaces, which generalizes the classical Narasimhan--Seshadri theory of vector bundles on compact Riemann surfaces.
---
PDF链接:
https://arxiv.org/pdf/0706.0925
二维码

扫码加我 拉你入群

请注明:姓名-公司-职位

以便审核进群资格,未注明则拒绝

相关推荐
栏目导航
热门文章
推荐文章

说点什么

分享

扫码加好友,拉您进群
各岗位、行业、专业交流群