全部版块 我的主页
论坛 经济学人 二区 外文文献专区
409 0
2022-03-03
摘要翻译:
研究曲线雅可比上的重言圈类。我们证明了关于一般曲线上重言类环的一个新结果,该结果允许除其他外,易于维数计算,并导致了关于该环结构的一些一般结果。其次,我们得到了某些生成类P_i的一个消失结果;这改进了Herbaut先前的一个结果。最后,我们将Herbaut和van der Geer-Kouvidakis的一个结果推广到Chow环(与它的商模代数等价性相反),并给出了进一步得到显式圈关系的方法。作为其中的一个组成部分,我们证明了关于Polishchuk算子D如何提升到Chow(J)的重言子代数的一个定理。
---
英文标题:
《Relations between tautological cycles on Jacobians》
---
作者:
Ben Moonen
---
最新提交年份:
2007
---
分类信息:

一级分类:Mathematics        数学
二级分类:Algebraic Geometry        代数几何
分类描述:Algebraic varieties, stacks, sheaves, schemes, moduli spaces, complex geometry, quantum cohomology
代数簇,叠,束,格式,模空间,复几何,量子上同调
--

---
英文摘要:
  We study tautological cycle classes on the Jacobian of a curve. We prove a new result about the ring of tautological classes on a general curve that allows, among other things, easy dimension calculations and leads to some general results about the structure of this ring. Next we obtain a vanishing result for some of the generating classes p_i; this gives an improvement of an earlier result of Herbaut. Finally we lift a result of Herbaut and van der Geer-Kouvidakis to the Chow ring (as opposed to its quotient modulo algebraic equivalence) and we give a method to obtain further explicit cycle relations. As an ingredient for this we prove a theorem about how Polishchuk's operator D lifts to the tautological subalgebra of Chow(J).
---
PDF链接:
https://arxiv.org/pdf/0706.3478
二维码

扫码加我 拉你入群

请注明:姓名-公司-职位

以便审核进群资格,未注明则拒绝

相关推荐
栏目导航
热门文章
推荐文章

说点什么

分享

扫码加好友,拉您进群
各岗位、行业、专业交流群