全部版块 我的主页
论坛 经济学人 二区 外文文献专区
278 0
2022-03-03
摘要翻译:
证明了Hodge型Shimura变种在任意未分支混合特征$(0,p)$下的良好光滑积分模型的存在性。作为第一个应用,我们给出了Hodge型Shimura变种的Langlands猜想(问题)的光滑解(答案)。作为第二个应用,我们证明了关于H-超特殊子群的Hodge型射影Shimura簇的积分规范模型在任意未分支混合特征$(0,p)$中的存在性,作为N-eron模型的Pro-etale覆盖;这形成了对米尔恩和雷曼猜想的证明的进展。虽然第二个应用程序以前在某些情况下是众所周知的,但它的证明是新的,更像是一个原则。
---
英文标题:
《Good reductions of Shimura varieties of Hodge type in arbitrary
  unramified mixed characteristic. Part I》
---
作者:
Adrian Vasiu
---
最新提交年份:
2020
---
分类信息:

一级分类:Mathematics        数学
二级分类:Number Theory        数论
分类描述:Prime numbers, diophantine equations, analytic number theory, algebraic number theory, arithmetic geometry, Galois theory
素数,丢番图方程,解析数论,代数数论,算术几何,伽罗瓦理论
--
一级分类:Mathematics        数学
二级分类:Algebraic Geometry        代数几何
分类描述:Algebraic varieties, stacks, sheaves, schemes, moduli spaces, complex geometry, quantum cohomology
代数簇,叠,束,格式,模空间,复几何,量子上同调
--

---
英文摘要:
  We prove the existence of good smooth integral models of Shimura varieties of Hodge type in arbitrary unramified mixed characteristic $(0,p)$. As a first application we provide a smooth solution (answer) to a conjecture (question) of Langlands for Shimura varieties of Hodge type. As a second application we prove the existence in arbitrary unramified mixed characteristic $(0,p)$ of integral canonical models of projective Shimura varieties of Hodge type with respect to h--hyperspecial subgroups as pro-\'etale covers of N\'eron models; this forms progress towards the proof of conjectures of Milne and Reimann. Though the second application was known before in some cases, its proof is new and more of a principle.
---
PDF链接:
https://arxiv.org/pdf/0707.1668
二维码

扫码加我 拉你入群

请注明:姓名-公司-职位

以便审核进群资格,未注明则拒绝

相关推荐
栏目导航
热门文章
推荐文章

说点什么

分享

扫码加好友,拉您进群
各岗位、行业、专业交流群