摘要翻译:
信念融合是将来自不同来源的独立信念或证据组合在一起的原则。根据要建模的情况,可以应用不同的信念融合方法。定义了累积平均信念融合用于主观逻辑中的观点融合,以及一般信念函数的融合。裂变原理与融合相反,即从已经融合的信念中消除特定信念的贡献,目的是导出剩余的信念。本文描述了主观逻辑中的累积信念裂变和平均信念裂变。例如,这些算子可以应用于贝叶斯信念网络中的信念修正,其中给定证据源的信念贡献可以确定为给定融合信念及其其他贡献信念的函数。
---
英文标题:
《Cumulative and Averaging Fission of Beliefs》
---
作者:
Audun Josang
---
最新提交年份:
2007
---
分类信息:
一级分类:Computer Science 计算机科学
二级分类:Artificial Intelligence
人工智能
分类描述:Covers all areas of AI except Vision, Robotics, Machine Learning, Multiagent Systems, and Computation and Language (Natural Language Processing), which have separate subject areas. In particular, includes Expert Systems, Theorem Proving (although this may overlap with Logic in Computer Science), Knowledge Representation, Planning, and Uncertainty in AI. Roughly includes material in ACM Subject Classes I.2.0, I.2.1, I.2.3, I.2.4, I.2.8, and I.2.11.
涵盖了人工智能的所有领域,除了视觉、机器人、机器学习、多智能体系统以及计算和语言(自然语言处理),这些领域有独立的学科领域。特别地,包括专家系统,定理证明(尽管这可能与计算机科学中的逻辑重叠),知识表示,规划,和人工智能中的不确定性。大致包括ACM学科类I.2.0、I.2.1、I.2.3、I.2.4、I.2.8和I.2.11中的材料。
--
一级分类:Computer Science 计算机科学
二级分类:Logic in Computer Science 计算机科学中的逻辑
分类描述:Covers all aspects of logic in computer science, including finite model theory, logics of programs, modal logic, and program verification. Programming language semantics should have Programming Languages as the primary subject area. Roughly includes material in ACM Subject Classes D.2.4, F.3.1, F.4.0, F.4.1, and F.4.2; some material in F.4.3 (formal languages) may also be appropriate here, although Computational Complexity is typically the more appropriate subject area.
涵盖计算机科学中逻辑的所有方面,包括有限模型理论,程序逻辑,模态逻辑和程序验证。程序设计语言语义学应该把程序设计语言作为主要的学科领域。大致包括ACM学科类D.2.4、F.3.1、F.4.0、F.4.1和F.4.2中的材料;F.4.3(形式语言)中的一些材料在这里也可能是合适的,尽管计算复杂性通常是更合适的主题领域。
--
---
英文摘要:
Belief fusion is the principle of combining separate beliefs or bodies of evidence originating from different sources. Depending on the situation to be modelled, different belief fusion methods can be applied. Cumulative and averaging belief fusion is defined for fusing opinions in subjective logic, and for fusing belief functions in general. The principle of fission is the opposite of fusion, namely to eliminate the contribution of a specific belief from an already fused belief, with the purpose of deriving the remaining belief. This paper describes fission of cumulative belief as well as fission of averaging belief in subjective logic. These operators can for example be applied to belief revision in Bayesian belief networks, where the belief contribution of a given evidence source can be determined as a function of a given fused belief and its other contributing beliefs.
---
PDF链接:
https://arxiv.org/pdf/0712.1182