全部版块 我的主页
论坛 经济学人 二区 外文文献专区
280 0
2022-03-03
摘要翻译:
我们考虑了具有有理雅可比系数的周环。假定D是曲线的无基点G^R_d中的一个因子,使得正则因子K是因子D的倍数,我们找到了重言圈之间的关系。我们给出了在p^1上具有d次复盖且分支点均为d阶的曲线的应用,进而给出了超椭圆曲线的应用。
---
英文标题:
《On the tautological ring of a Jacobian modulo rational equivalence》
---
作者:
Baohua Fu (LMJL), Fabien Herbaut (GRIM)
---
最新提交年份:
2007
---
分类信息:

一级分类:Mathematics        数学
二级分类:Algebraic Geometry        代数几何
分类描述:Algebraic varieties, stacks, sheaves, schemes, moduli spaces, complex geometry, quantum cohomology
代数簇,叠,束,格式,模空间,复几何,量子上同调
--

---
英文摘要:
  We consider the Chow ring with rational coefficients of the Jacobian of a curve. Assume D is a divisor in a base point free g^r_d of the curve such that the canonical divisor K is a multiple of the divisor D. We find relations between tautological cycles. We give applications for curves having a degree d covering of P^1 whose ramification points are all of order d, and then for hyperelliptic curves.
---
PDF链接:
https://arxiv.org/pdf/0706.2814
二维码

扫码加我 拉你入群

请注明:姓名-公司-职位

以便审核进群资格,未注明则拒绝

相关推荐
栏目导航
热门文章
推荐文章

说点什么

分享

扫码加好友,拉您进群
各岗位、行业、专业交流群