摘要翻译:
一个非零常数雅可比多项式映射$F=(P,Q):\MathBB{C}^2\longrightTarrow\MathBB{C}^2$具有一个多项式逆,如果分量$P$是一个简单多项式,即当$P$扩展到一个紧化$x$的态射$P:x\longrightTarrow\MathBB{P}^1$时,$P$对紧化因子$d=x-\MathBB{C}^2$的每个不可约分量$C$的限制是0次或1次。
---
英文标题:
《Plane Jacobian conjecture for simple polynomials》
---
作者:
Nguyen Van Chau
---
最新提交年份:
2007
---
分类信息:
一级分类:Mathematics 数学
二级分类:Algebraic Geometry 代数几何
分类描述:Algebraic varieties, stacks, sheaves, schemes, moduli spaces, complex geometry, quantum cohomology
代数簇,叠,束,格式,模空间,复几何,量子上同调
--
一级分类:Mathematics 数学
二级分类:Commutative Algebra 交换代数
分类描述:Commutative rings, modules, ideals, homological algebra, computational aspects, invariant theory, connections to algebraic geometry and combinatorics
交换环,模,理想,同调代数,计算方面,不变理论,与代数几何和组合学的联系
--
---
英文摘要:
A non-zero constant Jacobian polynomial map $F=(P,Q):\mathbb{C}^2 \longrightarrow \mathbb{C}^2$ has a polynomial inverse if the component $P$ is a simple polynomial, i.e. if, when $P$ extended to a morphism $p:X\longrightarrow \mathbb{P}^1$ of a compactification $X$ of $\mathbb{C}^2$, the restriction of $p$ to each irreducible component $C$ of the compactification divisor $D = X-\mathbb{C}^2$ is either degree 0 or 1.
---
PDF链接:
https://arxiv.org/pdf/0711.3894