全部版块 我的主页
论坛 经济学人 二区 外文文献专区
260 0
2022-03-03
摘要翻译:
音频分类是识别与给定音频信号相关的声音类别的任务。本文基于最新发布的AudioSet数据库,对大规模音频分类进行了研究。AudioSet包括来自YouTube的200万个音频样本,这些样本用527个声音类别标签进行了人为注释。应用不同类型的神经网络模型,对AudioSet的平衡训练集和评价集进行了音频分类实验。对这些模型的分类性能和模型复杂度进行了比较分析。虽然CNN模型比MLP和RNN具有更好的性能,但其模型复杂度较高,不利于实际应用。我们提出了两种不同的策略来构造低维嵌入特征提取器,从而减少模型参数的数量。结果表明,简化后的CNN模型的模型参数仅为原模型的1/22,性能稍有下降。
---
英文标题:
《Reducing Model Complexity for DNN Based Large-Scale Audio Classification》
---
作者:
Yuzhong Wu, Tan Lee
---
最新提交年份:
2018
---
分类信息:

一级分类:Computer Science        计算机科学
二级分类:Sound        声音
分类描述:Covers all aspects of computing with sound, and sound as an information channel. Includes models of sound, analysis and synthesis, audio user interfaces, sonification of data, computer music, and sound signal processing. Includes ACM Subject Class H.5.5, and intersects with H.1.2, H.5.1, H.5.2, I.2.7, I.5.4, I.6.3, J.5, K.4.2.
涵盖了声音计算的各个方面,以及声音作为一种信息通道。包括声音模型、分析和合成、音频用户界面、数据的可听化、计算机音乐和声音信号处理。包括ACM学科类H.5.5,并与H.1.2、H.5.1、H.5.2、I.2.7、I.5.4、I.6.3、J.5、K.4.2交叉。
--
一级分类:Electrical Engineering and Systems Science        电气工程与系统科学
二级分类:Audio and Speech Processing        音频和语音处理
分类描述:Theory and methods for processing signals representing audio, speech, and language, and their applications. This includes analysis, synthesis, enhancement, transformation, classification and interpretation of such signals as well as the design, development, and evaluation of associated signal processing systems. Machine learning and pattern analysis applied to any of the above areas is also welcome.  Specific topics of interest include: auditory modeling and hearing aids; acoustic beamforming and source localization; classification of acoustic scenes; speaker separation; active noise control and echo cancellation; enhancement; de-reverberation; bioacoustics; music signals analysis, synthesis and modification; music information retrieval;  audio for multimedia and joint audio-video processing; spoken and written language modeling, segmentation, tagging, parsing, understanding, and translation; text mining; speech production, perception, and psychoacoustics; speech analysis, synthesis, and perceptual modeling and coding; robust speech recognition; speaker recognition and characterization; deep learning, online learning, and graphical models applied to speech, audio, and language signals; and implementation aspects ranging from system architecture to fast algorithms.
处理代表音频、语音和语言的信号的理论和方法及其应用。这包括分析、合成、增强、转换、分类和解释这些信号,以及相关信号处理系统的设计、开发和评估。机器学习和模式分析应用于上述任何领域也是受欢迎的。感兴趣的具体主题包括:听觉建模和助听器;声波束形成与声源定位;声场景分类;说话人分离;有源噪声控制和回声消除;增强;去混响;生物声学;音乐信号的分析、合成与修饰;音乐信息检索;多媒体音频和联合音视频处理;口语和书面语建模、切分、标注、句法分析、理解和翻译;文本挖掘;言语产生、感知和心理声学;语音分析、合成、感知建模和编码;鲁棒语音识别;说话人识别与特征描述;应用于语音、音频和语言信号的深度学习、在线学习和图形模型;以及从系统架构到快速算法的实现方面。
--

---
英文摘要:
  Audio classification is the task of identifying the sound categories that are associated with a given audio signal. This paper presents an investigation on large-scale audio classification based on the recently released AudioSet database. AudioSet comprises 2 millions of audio samples from YouTube, which are human-annotated with 527 sound category labels. Audio classification experiments with the balanced training set and the evaluation set of AudioSet are carried out by applying different types of neural network models. The classification performance and the model complexity of these models are compared and analyzed. While the CNN models show better performance than MLP and RNN, its model complexity is relatively high and undesirable for practical use. We propose two different strategies that aim at constructing low-dimensional embedding feature extractors and hence reducing the number of model parameters. It is shown that the simplified CNN model has only 1/22 model parameters of the original model, with only a slight degradation of performance.
---
PDF链接:
https://arxiv.org/pdf/1711.00229
二维码

扫码加我 拉你入群

请注明:姓名-公司-职位

以便审核进群资格,未注明则拒绝

相关推荐
栏目导航
热门文章
推荐文章

说点什么

分享

扫码加好友,拉您进群
各岗位、行业、专业交流群