摘要翻译:
定义了一类与随机环聚合物有关的随机矩阵系综。这种无规环状聚合物是细胞核中染色质等生物聚合物的一种可能模型。证明了最大特征值$\lambda_{max}$的分布依赖于随机矩阵项中的一个渗流转变。渗流阈值以下为多峰分布,阈值以上为Tracy-Widom分布。我们还证明了特征值的分布既不是Wigner形式,也不是高斯形式。
---
英文标题:
《Percolation in a Class of Band Structured Random Matrices》
---
作者:
Dieter W. Heermann and Manfred Bohn
---
最新提交年份:
2007
---
分类信息:
一级分类:Physics        物理学
二级分类:Statistical Mechanics        统计力学
分类描述:Phase transitions, thermodynamics, field theory, non-equilibrium phenomena, renormalization group and scaling, integrable models, turbulence
相变,热力学,场论,非平衡现象,重整化群和标度,可积模型,湍流
--
一级分类:Physics        物理学
二级分类:Other Condensed Matter        其他凝聚态物质
分类描述:Work in condensed matter that does not fit into the other cond-mat classifications
在不适合其他cond-mat分类的凝聚态物质中工作
--
---
英文摘要:
  We define a class of random matrix ensembles that pertain to random looped polymers. Such random looped polymers are a possible model for bio-polymers such as chromatin in the cell nucleus. It is shown that the distribution of the largest eigenvalue $\lambda_{max}$ depends on a percolation transition in the entries of the random matrices. Below the percolation threshold the distribution is multi-peaked and changes above the threshold to the Tracy-Widom distribution. We also show that the distribution of the eigenvalues is neither of the Wigner form nor gaussian. 
---
PDF链接:
https://arxiv.org/pdf/705.1241