摘要翻译:
我们定义了频率互信息(MI-in-frequency)来检测和量化数据中不同频率分量之间的统计相关性,称为交叉频率耦合,并将其应用于来自大脑的电生理记录来推断交叉频率耦合。目前神经科学中用于量化交叉频率耦合的度量方法无法检测非高斯大脑记录中的两个频率分量是否在统计上独立。基于随机过程Cramer表示的Shannon互信息的Mi in frequency度量克服了这一缺点,可以检测非高斯信号之间的频率统计相关性。然后,我们描述了两种基于核密度估计和基于最近邻算法的数据驱动的MI in frequency估计,并在仿真数据上验证了它们的性能。然后,我们使用MI-in-frequency估计两个跨时间依赖的数据流之间的互信息,而不做任何参数模型假设。最后,我们使用Mi-in-frequency度量从癫痫发作期间的皮层电图记录中研究癫痫发作区的交叉频率耦合。推断出的交叉频率耦合特性对于优化基于电刺激的癫痫治疗的空间和光谱参数至关重要。
---
英文标题:
《Mutual Information in Frequency and its Application to Measure
  Cross-Frequency Coupling in Epilepsy》
---
作者:
Rakesh Malladi, Don H Johnson, Giridhar P Kalamangalam, Nitin Tandon
  and Behnaam Aazhang
---
最新提交年份:
2018
---
分类信息:
一级分类:Quantitative Biology        数量生物学
二级分类:Neurons and Cognition        神经元与认知
分类描述:Synapse, cortex, neuronal dynamics, neural network, sensorimotor control, behavior, attention
突触,皮层,神经元动力学,
神经网络,感觉运动控制,行为,注意
--
一级分类:Computer Science        计算机科学
二级分类:Information Theory        信息论
分类描述:Covers theoretical and experimental aspects of information theory and coding. Includes material in ACM Subject Class E.4 and intersects with H.1.1.
涵盖信息论和编码的理论和实验方面。包括ACM学科类E.4中的材料,并与H.1.1有交集。
--
一级分类:Electrical Engineering and Systems Science        电气工程与系统科学
二级分类:Signal Processing        信号处理
分类描述:Theory, algorithms, performance analysis and applications of signal and data analysis, including physical modeling, processing, detection and parameter estimation, learning, mining, retrieval, and information extraction. The term "signal" includes speech, audio, sonar, radar, geophysical, physiological, (bio-) medical, image, video, and multimodal natural and man-made signals, including communication signals and data. Topics of interest include: statistical signal processing, spectral estimation and system identification; filter design, adaptive filtering / stochastic learning; (compressive) sampling, sensing, and transform-domain methods including fast algorithms; signal processing for machine learning and machine learning for signal processing applications; in-network and graph signal processing; convex and nonconvex optimization methods for signal processing applications; radar, sonar, and sensor array beamforming and direction finding; communications signal processing; low power, multi-core and system-on-chip signal processing; sensing, communication, analysis and optimization for cyber-physical systems such as power grids and the Internet of Things.
信号和数据分析的理论、算法、性能分析和应用,包括物理建模、处理、检测和参数估计、学习、挖掘、检索和信息提取。“信号”一词包括语音、音频、声纳、雷达、地球物理、生理、(生物)医学、图像、视频和多模态自然和人为信号,包括通信信号和数据。感兴趣的主题包括:统计信号处理、谱估计和系统辨识;滤波器设计;自适应滤波/随机学习;(压缩)采样、传感和变换域方法,包括快速算法;用于机器学习的信号处理和用于信号处理应用的
机器学习;网络与图形信号处理;信号处理中的凸和非凸优化方法;雷达、声纳和传感器阵列波束形成和测向;通信信号处理;低功耗、多核、片上系统信号处理;信息物理系统的传感、通信、分析和优化,如电网和物联网。
--
一级分类:Mathematics        数学
二级分类:Information Theory        信息论
分类描述:math.IT is an alias for cs.IT. Covers theoretical and experimental aspects of information theory and coding.
它是cs.it的别名。涵盖信息论和编码的理论和实验方面。
--
---
英文摘要:
  We define a metric, mutual information in frequency (MI-in-frequency), to detect and quantify the statistical dependence between different frequency components in the data, referred to as cross-frequency coupling and apply it to electrophysiological recordings from the brain to infer cross-frequency coupling. The current metrics used to quantify the cross-frequency coupling in neuroscience cannot detect if two frequency components in non-Gaussian brain recordings are statistically independent or not. Our MI-in-frequency metric, based on Shannon's mutual information between the Cramer's representation of stochastic processes, overcomes this shortcoming and can detect statistical dependence in frequency between non-Gaussian signals. We then describe two data-driven estimators of MI-in-frequency: one based on kernel density estimation and the other based on the nearest neighbor algorithm and validate their performance on simulated data. We then use MI-in-frequency to estimate mutual information between two data streams that are dependent across time, without making any parametric model assumptions. Finally, we use the MI-in- frequency metric to investigate the cross-frequency coupling in seizure onset zone from electrocorticographic recordings during seizures. The inferred cross-frequency coupling characteristics are essential to optimize the spatial and spectral parameters of electrical stimulation based treatments of epilepsy. 
---
PDF链接:
https://arxiv.org/pdf/1711.01629