摘要翻译:
设$G$是作用于紧复流形$M$上的紧李群。证明了在$M$上微分算子的$G$-Lefschetz数的迹密度公式。我们将Engeli和Felder最近的结果推广到Orbifolds。
---
英文标题:
《Equivariant Lefschetz number of differential operators》
---
作者:
G. Felder and X. Tang
---
最新提交年份:
2007
---
分类信息:
一级分类:Mathematics 数学
二级分类:Quantum Algebra 量子代数
分类描述:Quantum groups, skein theories, operadic and diagrammatic algebra, quantum field theory
量子群,skein理论,运算代数和图解代数,量子场论
--
一级分类:Mathematics 数学
二级分类:Algebraic Geometry 代数几何
分类描述:Algebraic varieties, stacks, sheaves, schemes, moduli spaces, complex geometry, quantum cohomology
代数簇,叠,束,格式,模空间,复几何,量子上同调
--
---
英文摘要:
Let $G$ be a compact Lie group acting on a compact complex manifold $M$. We prove a trace density formula for the $G$-Lefschetz number of a differential operator on $M$. We generalize Engeli and Felder's recent results to orbifolds.
---
PDF链接:
https://arxiv.org/pdf/0706.1021