摘要翻译:
在以前的一篇论文中,我们在主极化阿贝尔变体的θ因子上构造了一个Cartier因子,该变体的支撑精确地是高斯映射的分支轨迹。在本注记中,我们讨论了与这个轨迹相关的格林函数。对于Jacobian,我们把这个格林函数与相应的Riemann曲面的正则格林函数联系起来。
---
英文标题:
《Gauss map on the theta divisor and Green's functions》
---
作者:
Robin de Jong
---
最新提交年份:
2012
---
分类信息:
一级分类:Mathematics 数学
二级分类:Algebraic Geometry 代数几何
分类描述:Algebraic varieties, stacks, sheaves, schemes, moduli spaces, complex geometry, quantum cohomology
代数簇,叠,束,格式,模空间,复几何,量子上同调
--
---
英文摘要:
In an earlier paper we constructed a Cartier divisor on the theta divisor of a principally polarised abelian variety whose support is precisely the ramification locus of the Gauss map. In this note we discuss a Green's function associated to this locus. For jacobians we relate this Green's function to the canonical Green's function of the corresponding Riemann surface.
---
PDF链接:
https://arxiv.org/pdf/0705.0098