摘要翻译:
本文证明了在$p$或$N$增加的意义下,$d$次的有效$p$-圈的Chow簇$C_{p,d}(p^n)$的同伦群是稳定的。我们还得到了Lawson和Michelsohn关于二次圈空间上同伦群的一个问题的否定答案。
---
英文标题:
《Algebraic Cycles of a Fixed Degree》
---
作者:
Wenchuan Hu
---
最新提交年份:
2008
---
分类信息:
一级分类:Mathematics 数学
二级分类:Algebraic Geometry 代数几何
分类描述:Algebraic varieties, stacks, sheaves, schemes, moduli spaces, complex geometry, quantum cohomology
代数簇,叠,束,格式,模空间,复几何,量子上同调
--
一级分类:Mathematics 数学
二级分类:Algebraic Topology 代数拓扑
分类描述:Homotopy theory, homological algebra, algebraic treatments of manifolds
同伦理论,同调代数,流形的代数处理
--
---
英文摘要:
In this paper, the homotopy groups of Chow variety $C_{p,d}(P^n)$ of effective $p$-cycles of degree $d$ is proved to be stable in the sense that $p$ or $n$ increases. We also obtain a negative answer to a question by Lawson and Michelsohn on homotopy groups for the space of degree two cycles.
---
PDF链接:
https://arxiv.org/pdf/0810.2840