摘要翻译:
在实证研究中,通常假定可观察到的和不可观察到的是相加可分的,特别是当前者是内生的时。这样做是因为人们普遍认识到,当两者之间的相互作用被允许时,识别和估计就会出现挑战。从一个不可分离的IV模型出发,其中工具变量与不可观测项无关,我们发展了一个新的不可观测项可分离性的非参数检验。检验统计量的大样本分布是非标准的,并依赖于一个新的Donsker型中心极限定理,用于非参数IV残差的经验分布,这可能是独立的兴趣。使用2015年美国消费者支出调查的数据集,我们发现该测试拒绝了大多数商品的恩格尔曲线中的可分性。
---
英文标题:
《Are Unobservables Separable?》
---
作者:
Andrii Babii and Jean-Pierre Florens
---
最新提交年份:
2021
---
分类信息:
一级分类:Mathematics 数学
二级分类:Statistics Theory 统计理论
分类描述:Applied, computational and theoretical statistics: e.g. statistical inference, regression, time series, multivariate analysis, data analysis, Markov chain Monte Carlo, design of experiments, case studies
应用统计、计算统计和理论统计:例如统计推断、回归、时间序列、多元分析、
数据分析、马尔可夫链蒙特卡罗、实验设计、案例研究
--
一级分类:Economics 经济学
二级分类:Econometrics 计量经济学
分类描述:Econometric Theory, Micro-Econometrics, Macro-Econometrics, Empirical Content of Economic Relations discovered via New Methods, Methodological Aspects of the Application of Statistical Inference to Economic Data.
计量经济学理论,微观计量经济学,宏观计量经济学,通过新方法发现的经济关系的实证内容,统计推论应用于经济数据的方法论方面。
--
一级分类:Statistics 统计学
二级分类:Applications 应用程序
分类描述:Biology, Education, Epidemiology, Engineering, Environmental Sciences, Medical, Physical Sciences, Quality Control, Social Sciences
生物学,教育学,流行病学,工程学,环境科学,医学,物理科学,质量控制,社会科学
--
一级分类:Statistics 统计学
二级分类:Methodology 方法论
分类描述:Design, Surveys, Model Selection, Multiple Testing, Multivariate Methods, Signal and Image Processing, Time Series, Smoothing, Spatial Statistics, Survival Analysis, Nonparametric and Semiparametric Methods
设计,调查,模型选择,多重检验,多元方法,信号和图像处理,时间序列,平滑,空间统计,生存分析,非参数和半参数方法
--
一级分类:Statistics 统计学
二级分类:Statistics Theory 统计理论
分类描述:stat.TH is an alias for math.ST. Asymptotics, Bayesian Inference, Decision Theory, Estimation, Foundations, Inference, Testing.
Stat.Th是Math.St的别名。渐近,贝叶斯推论,决策理论,估计,基础,推论,检验。
--
---
英文摘要:
It is common to assume in empirical research that observables and unobservables are additively separable, especially, when the former are endogenous. This is done because it is widely recognized that identification and estimation challenges arise when interactions between the two are allowed for. Starting from a nonseparable IV model, where the instrumental variable is independent of unobservables, we develop a novel nonparametric test of separability of unobservables. The large-sample distribution of the test statistics is nonstandard and relies on a novel Donsker-type central limit theorem for the empirical distribution of nonparametric IV residuals, which may be of independent interest. Using a dataset drawn from the 2015 US Consumer Expenditure Survey, we find that the test rejects the separability in Engel curves for most of the commodities.
---
PDF链接:
https://arxiv.org/pdf/1705.01654