摘要翻译:
我们得到了一类非单连通的Calabi-Yau三元的详细分类,这类三元对弦现象学中的许多问题都有潜在的兴趣。这三重式是Schoen's Calabi-Yau三重式的商,它们是两个有理椭圆曲面P1上的纤维积。商是由一个自由作用的有限阿贝尔群保持纤维。我们的工作涉及有理椭圆曲面的受限有限自同构群的分类。
---
英文标题:
《On a class of non-simply connected Calabi-Yau threefolds》
---
作者:
Vincent Bouchard and Ron Donagi
---
最新提交年份:
2008
---
分类信息:
一级分类:Mathematics 数学
二级分类:Algebraic Geometry 代数几何
分类描述:Algebraic varieties, stacks, sheaves, schemes, moduli spaces, complex geometry, quantum cohomology
代数簇,叠,束,格式,模空间,复几何,量子上同调
--
一级分类:Physics 物理学
二级分类:High Energy Physics - Theory 高能物理-理论
分类描述:Formal aspects of quantum field theory. String theory, supersymmetry and supergravity.
量子场论的形式方面。弦理论,超对称性和超引力。
--
---
英文摘要:
We obtain a detailed classification for a class of non-simply connected Calabi-Yau threefolds which are of potential interest for a wide range of problems in string phenomenology. These threefolds arise as quotients of Schoen's Calabi-Yau threefolds, which are fiber products over P1 of two rational elliptic surfaces. The quotient is by a freely acting finite abelian group preserving the fibrations. Our work involves a classification of restricted finite automorphism groups of rational elliptic surfaces.
---
PDF链接:
https://arxiv.org/pdf/0704.3096