摘要翻译:
用著名的“孤子”方程定义的非线性时空动力学,为理解、预测和控制物理和生命科学中的复杂行为带来了不可或缺的工具。本文综述了sine-Gordon孤子、扭结和呼吸作为复杂物理系统和活细胞结构中的非线性激发模型,包括细胞内(DNA、蛋白质折叠和微管)和细胞间(神经脉冲和肌肉收缩)。关键词:Sine-Gordon孤子,扭结呼吸,DNA,蛋白质折叠,微管,神经传导,肌肉收缩
---
英文标题:
《Sine-Gordon Solitons, Kinks and Breathers as Physical Models of
Nonlinear Excitations in Living Cellular Structures》
---
作者:
Vladimir G. Ivancevic and Tijana T. Ivancevic
---
最新提交年份:
2013
---
分类信息:
一级分类:Quantitative Biology 数量生物学
二级分类:Other Quantitative Biology 其他定量生物学
分类描述:Work in quantitative biology that does not fit into the other q-bio classifications
不适合其他q-bio分类的定量生物学工作
--
一级分类:Physics 物理学
二级分类:Pattern Formation and Solitons 图形形成与孤子
分类描述:Pattern formation, coherent structures, solitons
图案形成,相干结构,孤子
--
---
英文摘要:
Nonlinear space-time dynamics, defined in terms of celebrated 'solitonic' equations, brings indispensable tools for understanding, prediction and control of complex behaviors in both physical and life sciences. In this paper, we review sine-Gordon solitons, kinks and breathers as models of nonlinear excitations in complex systems in physics and in living cellular structures, both intra-cellular (DNA, protein folding and microtubules) and inter-cellular (neural impulses and muscular contractions). Key words: Sine-Gordon solitons, kinks and breathers, DNA, Protein folding, Microtubules, Neural conduction, Muscular contraction
---
PDF链接:
https://arxiv.org/pdf/1305.0613