摘要翻译:
我们利用扭束来研究Brauer类的指数约简问题。一般说来,这个问题可以这样表述:给定一个字段$k$、一个$k$-Variety$X$和一个类$\alpha\In\br(k)$,通过将标量扩展到$k(X)$来计算类$\alpha_{k(X)}\In\br(X)$的索引。本文给出了计算指数约简的一般方法,它改进了Schofield和van den Bergh的经典结果。当$x$是亏格1的曲线时,我们利用Atiyah关于积分斜率稳定向量丛结构的定理,证明了我们的公式大大简化,给出了这种情况下指数约简问题的完全解。利用扭曲Fourier-Mukai变换,我们证明了一个类似简单的公式描述了高维阿贝尔变体下torsors上的齐次折射率约化。
---
英文标题:
《Index reduction for Brauer classes via stable sheaves (with an appendix
by Bhargav Bhatt)》
---
作者:
Daniel Krashen and Max Lieblich
---
最新提交年份:
2007
---
分类信息:
一级分类:Mathematics 数学
二级分类:Algebraic Geometry 代数几何
分类描述:Algebraic varieties, stacks, sheaves, schemes, moduli spaces, complex geometry, quantum cohomology
代数簇,叠,束,格式,模空间,复几何,量子上同调
--
一级分类:Mathematics 数学
二级分类:Rings and Algebras 环与代数
分类描述:Non-commutative rings and algebras, non-associative algebras, universal algebra and lattice theory, linear algebra, semigroups
非交换环与代数,非结合代数,泛代数与格论,线性代数,半群
--
---
英文摘要:
We use twisted sheaves to study the problem of index reduction for Brauer classes. In general terms, this problem may be phrased as follows: given a field $k$, a $k$-variety $X$, and a class $\alpha \in \Br(k)$, compute the index of the class $\alpha_{k(X)} \in \Br(X)$ obtained from $\alpha$ by extension of scalars to $k(X)$. We give a general method for computing index reduction which refines classical results of Schofield and van den Bergh. When $X$ is a curve of genus 1, we use Atiyah's theorem on the structure of stable vector bundles with integral slope to show that our formula simplifies dramatically, giving a complete solution to the index reduction problem in this case. Using the twisted Fourier-Mukai transform, we show that a similarly simple formula describes homogeneous index reduction on torsors under higher-dimensional abelian varieties.
---
PDF链接:
https://arxiv.org/pdf/0706.1072