摘要翻译:
本文的目的是证明G.Pareschi和M.Popa提出的关于阿贝尔变种的Castelnuovo理论可以无限小化。更确切地说,我们证明了一个不可约的主极化阿贝尔簇在极值位置上有一个有限格式,当且仅当它是雅可比的,并且该格式包含在唯一的Abel-Jacobi曲线中。
---
英文标题:
《Infinitesimal Castelnuovo Theory in Abelian Varieties》
---
作者:
Marti Lahoz
---
最新提交年份:
2021
---
分类信息:
一级分类:Mathematics 数学
二级分类:Algebraic Geometry 代数几何
分类描述:Algebraic varieties, stacks, sheaves, schemes, moduli spaces, complex geometry, quantum cohomology
代数簇,叠,束,格式,模空间,复几何,量子上同调
--
---
英文摘要:
The purpose of this article is to show that the Castelnuovo theory for abelian varieties, developed by G. Pareschi and M. Popa, can be infinitesimalized. More precisely, we prove that an irreducible principally polarized abelian variety has a finite scheme in extremal position, in the sense of Castelnuovo theory for abelian varieties, if, and only if, it is a Jacobian and the scheme is contained in a unique Abel-Jacobi curve.
---
PDF链接:
https://arxiv.org/pdf/0706.2239