摘要翻译:
这一理论工作定义了中性适应度背景下进化能力的自相关性度量。在经典的MAX-SAT问题上研究了该测度。这项工作突出了中性适应度景观的一个新特征,它允许设计新的适应的元启发式。
---
英文标题:
《Measuring the Evolvability Landscape to study Neutrality》
---
作者:
S\'ebastien Verel (I3S), Philippe Collard (I3S), Manuel Clergue (I3S)
---
最新提交年份:
2007
---
分类信息:
一级分类:Computer Science 计算机科学
二级分类:Artificial Intelligence
人工智能
分类描述:Covers all areas of AI except Vision, Robotics, Machine Learning, Multiagent Systems, and Computation and Language (Natural Language Processing), which have separate subject areas. In particular, includes Expert Systems, Theorem Proving (although this may overlap with Logic in Computer Science), Knowledge Representation, Planning, and Uncertainty in AI. Roughly includes material in ACM Subject Classes I.2.0, I.2.1, I.2.3, I.2.4, I.2.8, and I.2.11.
涵盖了人工智能的所有领域,除了视觉、机器人、机器学习、多智能体系统以及计算和语言(自然语言处理),这些领域有独立的学科领域。特别地,包括专家系统,定理证明(尽管这可能与计算机科学中的逻辑重叠),知识表示,规划,和人工智能中的不确定性。大致包括ACM学科类I.2.0、I.2.1、I.2.3、I.2.4、I.2.8和I.2.11中的材料。
--
---
英文摘要:
This theoretical work defines the measure of autocorrelation of evolvability in the context of neutral fitness landscape. This measure has been studied on the classical MAX-SAT problem. This work highlight a new characteristic of neutral fitness landscapes which allows to design new adapted metaheuristic.
---
PDF链接:
https://arxiv.org/pdf/0709.4011