摘要翻译:
构造了具有固定Segre符号$\sigma$的二次线复形的粗模空间$\cm_{qc}(\sigma)$以及相应奇异曲面的模空间$\cm_{ss}(\sigma)$。我们证明了与二次线复形相关联的映射,其奇异曲面诱导一个态射$\pi:\cm_{qc}(\sigma)\ra\cm_{ss}(\sigma)$。最后,我们推导出共奇异二次线复形的变数几乎总是曲线。
---
英文标题:
《Moduli spaces of quadratic complexes and their singular surfaces》
---
作者:
D. Avritzer, H. Lange
---
最新提交年份:
2007
---
分类信息:
一级分类:Mathematics 数学
二级分类:Algebraic Geometry 代数几何
分类描述:Algebraic varieties, stacks, sheaves, schemes, moduli spaces, complex geometry, quantum cohomology
代数簇,叠,束,格式,模空间,复几何,量子上同调
--
---
英文摘要:
We construct the coarse moduli space $\cM_{qc}(\sigma)$ of quadratic line complexes with a fixed Segre symbol $\sigma$ as well as the moduli space $\cM_{ss}(\sigma)$ of the corresponding singular surfaces. We show that the map associating to a quadratic line complex its singular surface induces a morphism $\pi: \cM_{qc}(\sigma) \ra \cM_{ss}(\sigma)$. Finally we deduce that the varieties of cosingular quadratic line complexes are almost always curves.
---
PDF链接:
https://arxiv.org/pdf/0707.2440