摘要翻译:
构造性地证明了满足预先规定的正齐次投影性质(PHPP)的随机货币账户的时间离散消费过程的存在性,并使账户始终为正且在最后为零。一个可能的例子是消费率在上述限制下形成鞅。对于有限空间,证明了任何具有上述限制的严格正消费策略至少具有一个相应的PHPP,并可以由其构造。我们还考虑了时间离散和连续账户过程下的数值例子,无限时间范围的情况,以及收入提取和奖金理论的应用。
---
英文标题:
《Consumption processes and positively homogeneous projection properties》
---
作者:
Tom Fischer
---
最新提交年份:
2007
---
分类信息:
一级分类:Quantitative Finance 数量金融学
二级分类:General Finance 一般财务
分类描述:Development of general quantitative methodologies with applications in finance
通用定量方法的发展及其在金融中的应用
--
一级分类:Mathematics 数学
二级分类:Optimization and Control 优化与控制
分类描述:Operations research, linear programming, control theory, systems theory, optimal control, game theory
运筹学,线性规划,控制论,系统论,最优控制,博弈论
--
---
英文摘要:
We constructively prove the existence of time-discrete consumption processes for stochastic money accounts that fulfill a pre-specified positively homogeneous projection property (PHPP) and let the account always be positive and exactly zero at the end. One possible example is consumption rates forming a martingale under the above restrictions. For finite spaces, it is shown that any strictly positive consumption strategy with restrictions as above possesses at least one corresponding PHPP and could be constructed from it. We also consider numeric examples under time-discrete and -continuous account processes, cases with infinite time horizons and applications to income drawdown and bonus theory.
---
PDF链接:
https://arxiv.org/pdf/0711.4225