全部版块 我的主页
论坛 经济学人 二区 外文文献专区
299 0
2022-03-04
摘要翻译:
磁共振指纹技术是一种新的定量成像技术,它可以在一个实验中同时获得多个MR组织参数图。在本文中,我们提出了一个估计理论框架来进行MR指纹的实验设计。具体来说,我们描述了一个离散时间动力学系统来模拟自旋动力学,并导出了一个估计理论界,即Cramer-Rao界(CRB),以表征MR指纹实验的信噪比(SNR)效率。然后,我们提出了一个最优实验设计问题,该问题在尊重物理约束和图像解码/重建过程中的其他约束的情况下,确定一系列获取参数以最大信噪比效率编码MR组织参数。我们通过数值模拟、体模实验和活体实验来评估所提方法的性能。我们证明了优化后的实验大大减少了数据采集时间和/或改进了参数估计。例如,优化实验使$T_2$maps的精度提高了大约两倍,同时保持了$T_1$maps相似或稍好的精度。最后,作为一个显著的观察,我们发现优化的采集参数序列似乎是高度结构化的,而不是常规MR指纹实验中规定的随机/伪随机变化。
---
英文标题:
《Optimal Experiment Design for Magnetic Resonance Fingerprinting:
  Cram\'er-Rao Bound Meets Spin Dynamics》
---
作者:
Bo Zhao, Justin P. Haldar, Congyu Liao, Dan Ma, Yun Jiang, Mark A.
  Griswold, Kawin Setsompop, and Lawrence L. Wald
---
最新提交年份:
2018
---
分类信息:

一级分类:Electrical Engineering and Systems Science        电气工程与系统科学
二级分类:Signal Processing        信号处理
分类描述:Theory, algorithms, performance analysis and applications of signal and data analysis, including physical modeling, processing, detection and parameter estimation, learning, mining, retrieval, and information extraction. The term "signal" includes speech, audio, sonar, radar, geophysical, physiological, (bio-) medical, image, video, and multimodal natural and man-made signals, including communication signals and data. Topics of interest include: statistical signal processing, spectral estimation and system identification; filter design, adaptive filtering / stochastic learning; (compressive) sampling, sensing, and transform-domain methods including fast algorithms; signal processing for machine learning and machine learning for signal processing applications; in-network and graph signal processing; convex and nonconvex optimization methods for signal processing applications; radar, sonar, and sensor array beamforming and direction finding; communications signal processing; low power, multi-core and system-on-chip signal processing; sensing, communication, analysis and optimization for cyber-physical systems such as power grids and the Internet of Things.
信号和数据分析的理论、算法、性能分析和应用,包括物理建模、处理、检测和参数估计、学习、挖掘、检索和信息提取。“信号”一词包括语音、音频、声纳、雷达、地球物理、生理、(生物)医学、图像、视频和多模态自然和人为信号,包括通信信号和数据。感兴趣的主题包括:统计信号处理、谱估计和系统辨识;滤波器设计;自适应滤波/随机学习;(压缩)采样、传感和变换域方法,包括快速算法;用于机器学习的信号处理和用于信号处理应用的机器学习;网络与图形信号处理;信号处理中的凸和非凸优化方法;雷达、声纳和传感器阵列波束形成和测向;通信信号处理;低功耗、多核、片上系统信号处理;信息物理系统的传感、通信、分析和优化,如电网和物联网。
--

---
英文摘要:
  Magnetic resonance (MR) fingerprinting is a new quantitative imaging paradigm, which simultaneously acquires multiple MR tissue parameter maps in a single experiment. In this paper, we present an estimation-theoretic framework to perform experiment design for MR fingerprinting. Specifically, we describe a discrete-time dynamic system to model spin dynamics, and derive an estimation-theoretic bound, i.e., the Cramer-Rao bound (CRB), to characterize the signal-to-noise ratio (SNR) efficiency of an MR fingerprinting experiment. We then formulate an optimal experiment design problem, which determines a sequence of acquisition parameters to encode MR tissue parameters with the maximal SNR efficiency, while respecting the physical constraints and other constraints from the image decoding/reconstruction process. We evaluate the performance of the proposed approach with numerical simulations, phantom experiments, and in vivo experiments. We demonstrate that the optimized experiments substantially reduce data acquisition time and/or improve parameter estimation. For example, the optimized experiments achieve about a factor of two improvement in the accuracy of $T_2$ maps, while keeping similar or slightly better accuracy of $T_1$ maps. Finally, as a remarkable observation, we find that the sequence of optimized acquisition parameters appears to be highly structured rather than randomly/pseudo-randomly varying as is prescribed in the conventional MR fingerprinting experiments.
---
PDF链接:
https://arxiv.org/pdf/1710.08062
二维码

扫码加我 拉你入群

请注明:姓名-公司-职位

以便审核进群资格,未注明则拒绝

相关推荐
栏目导航
热门文章
推荐文章

说点什么

分享

扫码加好友,拉您进群
各岗位、行业、专业交流群