摘要翻译:
了解用户的环境背景,即用户的室内位置和环境语义的知识,可以促进许多位置感知应用的开发。在本文中,我们提出了一种声学监测技术,该技术利用室内空间的音频记录来推断室内空间的语义知识。我们的技术使用这些空间的脉冲响应以及在它们中产生的环境声音来确定它们的语义标签。当我们处理更多的录音时,我们更新分配的标签中的\emph{freduction}。我们在三所大学大楼不同类型房间中获得的单说话人语音记录数据集上评估了我们的技术。在我们的评估中,真实标签的置信度\emph{}通常超过所有其他标签的置信度,在某些情况下,在少于30个样本的情况下收敛到100%。
---
英文标题:
《Inferring Room Semantics Using Acoustic Monitoring》
---
作者:
Muhammad A. Shah, Bhiksha Raj, Khaled A. Harras
---
最新提交年份:
2017
---
分类信息:
一级分类:Computer Science 计算机科学
二级分类:Sound 声音
分类描述:Covers all aspects of computing with sound, and sound as an information channel. Includes models of sound, analysis and synthesis, audio user interfaces, sonification of data, computer music, and sound signal processing. Includes ACM Subject Class H.5.5, and intersects with H.1.2, H.5.1, H.5.2, I.2.7, I.5.4, I.6.3, J.5, K.4.2.
涵盖了声音计算的各个方面,以及声音作为一种信息通道。包括声音模型、分析和合成、音频用户界面、数据的可听化、计算机音乐和声音信号处理。包括ACM学科类H.5.5,并与H.1.2、H.5.1、H.5.2、I.2.7、I.5.4、I.6.3、J.5、K.4.2交叉。
--
一级分类:Electrical Engineering and Systems Science 电气工程与系统科学
二级分类:Audio and Speech Processing 音频和语音处理
分类描述:Theory and methods for processing signals representing audio, speech, and language, and their applications. This includes analysis, synthesis, enhancement, transformation, classification and interpretation of such signals as well as the design, development, and evaluation of associated signal processing systems. Machine learning and pattern analysis applied to any of the above areas is also welcome. Specific topics of interest include: auditory modeling and hearing aids; acoustic beamforming and source localization; classification of acoustic scenes; speaker separation; active noise control and echo cancellation; enhancement; de-reverberation; bioacoustics; music signals analysis, synthesis and modification; music information retrieval; audio for multimedia and joint audio-video processing; spoken and written language modeling, segmentation, tagging, parsing, understanding, and translation; text mining; speech production, perception, and psychoacoustics; speech analysis, synthesis, and perceptual modeling and coding; robust speech recognition; speaker recognition and characterization; deep learning, online learning, and graphical models applied to speech, audio, and language signals; and implementation aspects ranging from system architecture to fast algorithms.
处理代表音频、语音和语言的信号的理论和方法及其应用。这包括分析、合成、增强、转换、分类和解释这些信号,以及相关信号处理系统的设计、开发和评估。机器学习和模式分析应用于上述任何领域也是受欢迎的。感兴趣的具体主题包括:听觉建模和助听器;声波束形成与声源定位;声场景分类;说话人分离;有源噪声控制和回声消除;增强;去混响;生物声学;音乐信号的分析、合成与修饰;音乐信息检索;多媒体音频和联合音视频处理;口语和书面语建模、切分、标注、句法分析、理解和翻译;文本挖掘;言语产生、感知和心理声学;语音分析、合成、感知建模和编码;鲁棒语音识别;说话人识别与特征描述;应用于语音、音频和语言信号的
深度学习、在线学习和图形模型;以及从系统架构到快速算法的实现方面。
--
---
英文摘要:
Having knowledge of the environmental context of the user i.e. the knowledge of the users' indoor location and the semantics of their environment, can facilitate the development of many of location-aware applications. In this paper, we propose an acoustic monitoring technique that infers semantic knowledge about an indoor space \emph{over time,} using audio recordings from it. Our technique uses the impulse response of these spaces as well as the ambient sounds produced in them in order to determine a semantic label for them. As we process more recordings, we update our \emph{confidence} in the assigned label. We evaluate our technique on a dataset of single-speaker human speech recordings obtained in different types of rooms at three university buildings. In our evaluation, the confidence\emph{ }for the true label generally outstripped the confidence for all other labels and in some cases converged to 100\% with less than 30 samples.
---
PDF链接:
https://arxiv.org/pdf/1710.08684