摘要翻译:
本文以独立拍卖的出价为样本,研究了在信息结构的弱假设下,拍卖基本原理(如估价分布、福利度量)的推论问题。这个问题很重要,因为它允许我们以一种稳健的方式了解估值分布,即,不假设一个特定的信息结构在观察中成立。我们利用鲁棒机制设计文献中\cite{Bergemann2013}最近的贡献,利用不完全信息博弈中贝叶斯相关均衡和贝叶斯纳什均衡之间的联系,构造了一个计量经济学框架,用于使用观察到的出价数据来学习拍卖的基本原理。我们在私有价值和公共价值拍卖中展示了我们的识别集的构建。我们构造这些集合的方法继承了求解相关平衡的计算简单性:检查一个特定的估值分布是否属于所识别的集合就像确定一个{It线性}程序是否可行一样简单。一个类似的线性规划可以用来构造关于各种福利措施和反事实对象的识别集。为了推断和总结统计不确定性,我们提出了新的有限样本方法,利用尾部不等式来构造集合上的置信域。我们还着重介绍了基于贝叶斯自举和子抽样的方法。一组蒙特卡罗实验表明了我们的推理过程充分的有限样本性质。我们使用OCS拍卖的数据来说明我们的方法。
---
英文标题:
《Inference on Auctions with Weak Assumptions on Information》
---
作者:
Vasilis Syrgkanis, Elie Tamer, Juba Ziani
---
最新提交年份:
2018
---
分类信息:
一级分类:Economics 经济学
二级分类:Econometrics 计量经济学
分类描述:Econometric Theory, Micro-Econometrics, Macro-Econometrics, Empirical Content of Economic Relations discovered via New Methods, Methodological Aspects of the Application of Statistical Inference to Economic Data.
计量经济学理论,微观计量经济学,宏观计量经济学,通过新方法发现的经济关系的实证内容,统计推论应用于经济数据的方法论方面。
--
一级分类:Computer Science 计算机科学
二级分类:Computer Science and Game Theory 计算机科学与博弈论
分类描述:Covers all theoretical and applied aspects at the intersection of computer science and game theory, including work in mechanism design, learning in games (which may overlap with Learning), foundations of agent modeling in games (which may overlap with Multiagent systems), coordination, specification and formal methods for non-cooperative computational environments. The area also deals with applications of game theory to areas such as electronic commerce.
涵盖计算机科学和博弈论交叉的所有理论和应用方面,包括机制设计的工作,游戏中的学习(可能与学习重叠),游戏中的agent建模的基础(可能与多agent系统重叠),非合作计算环境的协调、规范和形式化方法。该领域还涉及博弈论在电子商务等领域的应用。
--
一级分类:Computer Science 计算机科学
二级分类:Machine Learning
机器学习
分类描述:Papers on all aspects of machine learning research (supervised, unsupervised, reinforcement learning, bandit problems, and so on) including also robustness, explanation, fairness, and methodology. cs.LG is also an appropriate primary category for applications of machine learning methods.
关于机器学习研究的所有方面的论文(有监督的,无监督的,强化学习,强盗问题,等等),包括健壮性,解释性,公平性和方法论。对于机器学习方法的应用,CS.LG也是一个合适的主要类别。
--
一级分类:Mathematics 数学
二级分类:Statistics Theory 统计理论
分类描述:Applied, computational and theoretical statistics: e.g. statistical inference, regression, time series, multivariate analysis, data analysis, Markov chain Monte Carlo, design of experiments, case studies
应用统计、计算统计和理论统计:例如统计推断、回归、时间序列、多元分析、
数据分析、马尔可夫链蒙特卡罗、实验设计、案例研究
--
一级分类:Statistics 统计学
二级分类:Statistics Theory 统计理论
分类描述:stat.TH is an alias for math.ST. Asymptotics, Bayesian Inference, Decision Theory, Estimation, Foundations, Inference, Testing.
Stat.Th是Math.St的别名。渐近,贝叶斯推论,决策理论,估计,基础,推论,检验。
--
---
英文摘要:
Given a sample of bids from independent auctions, this paper examines the question of inference on auction fundamentals (e.g. valuation distributions, welfare measures) under weak assumptions on information structure. The question is important as it allows us to learn about the valuation distribution in a robust way, i.e., without assuming that a particular information structure holds across observations. We leverage the recent contributions of \cite{Bergemann2013} in the robust mechanism design literature that exploit the link between Bayesian Correlated Equilibria and Bayesian Nash Equilibria in incomplete information games to construct an econometrics framework for learning about auction fundamentals using observed data on bids. We showcase our construction of identified sets in private value and common value auctions. Our approach for constructing these sets inherits the computational simplicity of solving for correlated equilibria: checking whether a particular valuation distribution belongs to the identified set is as simple as determining whether a {\it linear} program is feasible. A similar linear program can be used to construct the identified set on various welfare measures and counterfactual objects. For inference and to summarize statistical uncertainty, we propose novel finite sample methods using tail inequalities that are used to construct confidence regions on sets. We also highlight methods based on Bayesian bootstrap and subsampling. A set of Monte Carlo experiments show adequate finite sample properties of our inference procedures. We illustrate our methods using data from OCS auctions.
---
PDF链接:
https://arxiv.org/pdf/1710.03830