摘要翻译:
在这个简短的注释中,我们将研究定义在函数域上的射影簇中有界(扭曲)高度的点的个数,其中函数域来自维数大于或等于2的射影簇。研究的第一步是了解高度zeta函数的$p$-adic解析性质。特别地,我们将证明对于一大类射影变体,这个函数是$P$-adic亚纯的。
---
英文标题:
《On the $p$-adic meromorphy of the function field height zeta function》
---
作者:
C. Douglas Haessig
---
最新提交年份:
2007
---
分类信息:
一级分类:Mathematics 数学
二级分类:Number Theory 数论
分类描述:Prime numbers, diophantine equations, analytic number theory, algebraic number theory, arithmetic geometry, Galois theory
素数,丢番图方程,解析数论,代数数论,算术几何,伽罗瓦理论
--
一级分类:Mathematics 数学
二级分类:Algebraic Geometry 代数几何
分类描述:Algebraic varieties, stacks, sheaves, schemes, moduli spaces, complex geometry, quantum cohomology
代数簇,叠,束,格式,模空间,复几何,量子上同调
--
---
英文摘要:
In this brief note, we will investigate the number of points of bounded (twisted) height in a projective variety defined over a function field, where the function field comes from a projective variety of dimension greater than or equal to 2. A first step in this investigation is to understand the $p$-adic analytic properties of the height zeta function. In particular, we will show that for a large class of projective varieties this function is $p$-adic meromorphic.
---
PDF链接:
https://arxiv.org/pdf/0704.3410