摘要翻译:
在线性群作用下,给出了具有固定等变全Chern类的toric向量丛的模叠加作为框架丛的精细模方案的商。这种精细模格式被明确地描述为由组合指定秩条件裁剪出的部分标志变体的乘积的局部闭子格式。利用这一描述证明了秩三向量丛的模满足Vakil意义下的Murphy定律。本文的第一部分对Klyachko的多角向量丛分类作了完整的介绍。
---
英文标题:
《Moduli of toric vector bundles》
---
作者:
Sam Payne
---
最新提交年份:
2008
---
分类信息:
一级分类:Mathematics 数学
二级分类:Algebraic Geometry 代数几何
分类描述:Algebraic varieties, stacks, sheaves, schemes, moduli spaces, complex geometry, quantum cohomology
代数簇,叠,束,格式,模空间,复几何,量子上同调
--
---
英文摘要:
We give a presentation of the moduli stack of toric vector bundles with fixed equivariant total Chern class as a quotient of a fine moduli scheme of framed bundles by a linear group action. This fine moduli scheme is described explicitly as a locally closed subscheme of a product of partial flag varieties cut out by combinatorially specified rank conditions. We use this description to show that the moduli of rank three toric vector bundles satisfy Murphy's Law, in the sense of Vakil. The preliminary sections of the paper give a self-contained introduction to Klyachko's classification of toric vector bundles.
---
PDF链接:
https://arxiv.org/pdf/0705.0410