摘要翻译:
在前文中,我们对Picard数为1(和G半单)的光滑射影对称G-簇进行了分类。在这项工作中,我们给出了这类变体的几何描述。特别地,我们确定了它们的自同构群。当这个群Aut(X)非传递地作用于X时,我们描述了群X在齐次群中(关于一个较大群)的G-等变嵌入。
---
英文标题:
《Geometrical description of smooth projective symmetric varieties with
Picard number one》
---
作者:
Alessandro Ruzzi
---
最新提交年份:
2008
---
分类信息:
一级分类:Mathematics 数学
二级分类:Algebraic Geometry 代数几何
分类描述:Algebraic varieties, stacks, sheaves, schemes, moduli spaces, complex geometry, quantum cohomology
代数簇,叠,束,格式,模空间,复几何,量子上同调
--
一级分类:Mathematics 数学
二级分类:Representation Theory 表象理论
分类描述:Linear representations of algebras and groups, Lie theory, associative algebras, multilinear algebra
代数和群的线性表示,李理论,结合代数,多重线性代数
--
---
英文摘要:
In a previous paper we have classified the smooth projective symmetric G-varieties with Picard number one (and G semisimple). In this work we give a geometrical description of such varieties. In particular, we determine their group of automorphisms. When this group, Aut(X), acts non-transitively on X, we describe a G-equivariant embedding of the variety X in a homogeneous variety (with respect to a larger group).
---
PDF链接:
https://arxiv.org/pdf/0812.2096