摘要翻译:
考虑一个根系$R$和相应的toric变体$V_R$,其扇形是Weyl扇形,其字符格由$R$的根格给出。通过证明根系的一个纯组合结果,我们证明了在$v_r$上某些线丛的高上同调群的消失。这些结果与Mazur关于(单连通)分裂还原群的不等式的逆有关。
---
英文标题:
《A Vanishing Result for Toric Varieties Associated with Root Systems》
---
作者:
Q\"endrim R. Gashi
---
最新提交年份:
2007
---
分类信息:
一级分类:Mathematics 数学
二级分类:Representation Theory 表象理论
分类描述:Linear representations of algebras and groups, Lie theory, associative algebras, multilinear algebra
代数和群的线性表示,李理论,结合代数,多重线性代数
--
一级分类:Mathematics 数学
二级分类:Algebraic Geometry 代数几何
分类描述:Algebraic varieties, stacks, sheaves, schemes, moduli spaces, complex geometry, quantum cohomology
代数簇,叠,束,格式,模空间,复几何,量子上同调
--
---
英文摘要:
Consider a root system $R$ and the corresponding toric variety $V_R$ whose fan is the Weyl fan and whose lattice of characters is given by the root lattice for $R$. We prove the vanishing of the higher cohomology groups for certain line bundles on $V_R$ by proving a purely combinatorial result for root systems. These results are related to a converse to Mazur's Inequality for (simply-connected) split reductive groups.
---
PDF链接:
https://arxiv.org/pdf/0710.5751