摘要翻译:
设$G$为$(m,n)$型环面结的补的基本群。它有一个演示文稿$g=<x,yx^m=y^n>$。我们找到了将$G$表示为$SL(2,C)$的字符变体$X(G)$的几何描述。
---
英文标题:
《The SL(2,C)-character varieties of torus knots》
---
作者:
Vicente Mu\~noz
---
最新提交年份:
2009
---
分类信息:
一级分类:Mathematics 数学
二级分类:Algebraic Geometry 代数几何
分类描述:Algebraic varieties, stacks, sheaves, schemes, moduli spaces, complex geometry, quantum cohomology
代数簇,叠,束,格式,模空间,复几何,量子上同调
--
---
英文摘要:
Let $G$ be the fundamental group of the complement of the torus knot of type $(m,n)$. This has a presentation $G=<x,y|x^m=y^n>$. We find the geometric description of the character variety $X(G)$ of characters of representations of $G$ into $SL(2,C)$.
---
PDF链接:
https://arxiv.org/pdf/0901.1783