全部版块 我的主页
论坛 经济学人 二区 外文文献专区
295 0
2022-03-06
摘要翻译:
将有限群G表示的形式(混合特征)形变函子D看作正特征完美域k上幂级数环k[[t]]的自同构。假定G的作用是弱分枝的,即第二分枝群是平凡的。这类表示的例子可以通过群对普通曲线的作用来提供:分支群对这类曲线上任意点的完备局部环的作用是弱分支的。我们证明了只有当k具有特征2,G是二阶或同构于Klein群时,才会有这样的D不是亲可表示的。此外,我们还证明了其中只有第一个具有非亲表示的等分变形函子。
---
英文标题:
《Which weakly ramified group actions admit a universal formal
  deformation?》
---
作者:
Jakub Byszewski and Gunther Cornelissen
---
最新提交年份:
2008
---
分类信息:

一级分类:Mathematics        数学
二级分类:Algebraic Geometry        代数几何
分类描述:Algebraic varieties, stacks, sheaves, schemes, moduli spaces, complex geometry, quantum cohomology
代数簇,叠,束,格式,模空间,复几何,量子上同调
--
一级分类:Mathematics        数学
二级分类:Number Theory        数论
分类描述:Prime numbers, diophantine equations, analytic number theory, algebraic number theory, arithmetic geometry, Galois theory
素数,丢番图方程,解析数论,代数数论,算术几何,伽罗瓦理论
--

---
英文摘要:
  Consider a formal (mixed-characteristic) deformation functor D of a representation of a finite group G as automorphisms of a power series ring k[[t]] over a perfect field k of positive characteristic. Assume that the action of G is weakly ramified, i.e., the second ramification group is trivial. Examples of such representations are provided by a group action on an ordinary curve: the action of a ramification group on the completed local ring of any point on such a curve is weakly ramified.   We prove that the only such D that are not pro-representable occur if k has characteristic two and G is of order two or isomorphic to a Klein group. Furthermore, we show that only the first of those has a non-pro-representable equicharacteristic deformation functor.
---
PDF链接:
https://arxiv.org/pdf/0708.3279
二维码

扫码加我 拉你入群

请注明:姓名-公司-职位

以便审核进群资格,未注明则拒绝

相关推荐
栏目导航
热门文章
推荐文章

说点什么

分享

扫码加好友,拉您进群
各岗位、行业、专业交流群